期刊文献+

三维Laplace方程柯西问题具有Dirichlet核的软化正则解 被引量:2

A Mollification Method with Dirichlet Kernel to Solve the Cauchy Problem for the Three-dimensional Laplace Equation
下载PDF
导出
摘要 研究一类三维Laplace方程Cauchy问题,该问题是严重不适定的.为了获得其稳定的数值解,利用二维Dirichlet核构造软化算子,得到正则逼近解的显式形式,在先验参数的选取规则之下,给出正则近似解与精确解之间的误差估计,并通过数值实验检验方法的有效性和稳定性. The Cauchy problem for the Laplace equation is a severely ill-posed problem.In this paper,to obtain the stable numerical solution for this problem,a mollification method with the two-dimensional Dirichlet kernel is proposed to construct regularization approximation solution,and the error estimate between the regularization approximation solution and the exact solution is given.Finally,a numerical example is presented to show the effectiveness of the proposed method.
作者 何尚琴 冯秀芳 HE Shangqin;FENG Xiufang(School of Mathematics and Information Science,North Minzu University,Yinchuan 750021,Ningxia;School of Mathematics and Statistics,Ningxia University,Yinchuan 750021,Ningxia)
出处 《四川师范大学学报(自然科学版)》 CAS 2021年第1期55-62,共8页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11961054) 宁夏自然科学基金(NZ16011和2020AAC03253)。
关键词 三维Laplace方程 不适定 二元Dirichlet核 软化法 误差估计 数值实验 three-dimensional Laplace equation ill-posed two-dimensional Dirichlet kernel mollification method error estimate numerical experiment
  • 相关文献

参考文献4

二级参考文献8

  • 1Kirsch A. An Introduction to the Mathematical Theory of Inverse Problems[M]. New York: Springer-Verlag, 1996.
  • 2Qian Z, Fu C L, Xiong X T. Fourth-order modified method for the Cauchy problem for the Laplace equation[J]. Comput. Appl. Math. , 2006, 192: 205-218.
  • 3Qian Zhi, Fu Chu Li, Li Zhen Ping. Two regularization methods for a Cauehy problem for the Laplace equation[J]. J. Math. Anal. Appl. , 2008, 338: 479-489.
  • 4Tikhonov A N, Arsenin V Y. Solutions of Ill-posed Problems[R]. Washington: Winston and Sons, 1997.
  • 5Berntsson F, Eld'en L. Numerical solution of a Cauchy problem of Laplaceequation[J]. Inverse Probl. , 2001,17: 839-853.
  • 6Xiong X T, Fu C L. Central difference regularization method for the Cauehy problem of the Laplace's equation[J]. Appl. Math. Comput. , 2006,181: 675-684.
  • 7H'ao D N. A mollification method for ill posed problems[J]. Numer. Math. ,1994,68: 469-506.
  • 8沈远彤,叶碧泉,弈旭明.用小波-配点法求解一类有奇异性的微分方程[J].数学杂志,1997,17(4):517-521. 被引量:6

共引文献7

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部