期刊文献+

THE EXISTENCE OF A NONTRIVIAL WEAK SOLUTION TO A DOUBLE CRITICAL PROBLEM INVOLVING A FRACTIONAL LAPLACIAN IN R^N WITH A HARDY TERM 被引量:3

下载PDF
导出
摘要 In this paper,we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:(−Δ)s u−γu|x|2s=|u|2∗s(β)−2 u|x|β+[Iμ∗Fα(⋅,u)](x)fα(x,u),u∈H˙s(R n),(0.1)(1)where s∈(0,1),0≤α,β<2s<n,μ∈(0,n),γ<γH,Iμ(x)=|x|−μ,Fα(x,u)=|u(x)|2#μ(α)|x|δμ(α),fα(x,u)=|u(x)|2#μ(α)−2 u(x)|x|δμ(α),2#μ(α)=(1−μ2n)⋅2∗s(α),δμ(α)=(1−μ2n)α,2∗s(α)=2(n−α)n−2s andγH=4 sΓ2(n+2s4)Γ2(n−2s4).We show that problem(0.1)admits at least a weak solution under some conditions.To prove the main result,we develop some useful tools based on a weighted Morrey space.To be precise,we discover the embeddings H˙s(R n)↪L 2∗s(α)(R n,|y|−α)↪L p,n−2s2 p+pr(R n,|y|−pr),(0.2)(2)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α))and r=α2∗s(α).We also establish an improved Sobolev inequality,(∫R n|u(y)|2∗s(α)|y|αdy)12∗s(α)≤C||u||θH˙s(R n)||u||1−θL p,n−2s2 p+pr(R n,|y|−pr),∀u∈H˙s(R n),(0.3)(3)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α)),r=α2∗s(α),0<max{22∗s(α),2∗s−12∗s(α)}<θ<1,2∗s=2nn−2s and C=C(n,s,α)>0 is a constant.Inequality(0.3)is a more general form of Theorem 1 in Palatucci,Pisante[1].By using the mountain pass lemma along with(0.2)and(0.3),we obtain a nontrivial weak solution to problem(0.1)in a direct way.It is worth pointing out that(0.2)and 0.3)could be applied to simplify the proof of the existence results in[2]and[3].
作者 Gongbao LI Tao YANG 李工宝;杨涛(Hubei Key Laboratory of Mathematical Sciences and School of Mathematics and Statistics,Central China Normal University,Wuhan 430079,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2020年第6期1808-1830,共23页 数学物理学报(B辑英文版)
基金 Natural Science Foundation of China(11771166) Hubei Key Laboratory of Mathematical Sciences and Program for Changjiang Scholars and Innovative Research Team in University#IRT17R46.
  • 相关文献

二级参考文献16

  • 1Deng Y B. Existence of multiple solutions for -△u + c^2u =u N+2/N-2 + μf(x) in R^N. Proc Royal Soc Edin,1992, 112A: 161-175
  • 2Ruiz D, Willem M. Elliptic problems with critical exponents and Hardy potentials. J D E, 2003, 190: 524-538
  • 3Yosida K. Functional Analysis. 6-th ed. Berlin: Springer, 1999. 120-121
  • 4Brezis H, Lieb E. A relation between point convergence of functions and convergence of functions. Proc AMS, 1983, 88:486-490
  • 5Brezis H, Nirenberg L. Pisitive solutions of nonlinear elliptic equations involving critical Sobolev exponents.Comm Pure Appl Math, 1983, 36:437-477
  • 6Caffarelli L, Cohn R, Nirenberg L. First order interpolation inequality with weights. Compositio Math,1984, 53:259-275
  • 7Cao D M, Li G B, Zhou H S. Multiple solutions for nonhomogeneous elliptic equations involving critical Sobolev exponent. Proceedings of the Royal Society of Edinburg, 1994, 124A: 1177-1191
  • 8Cheng T, Zhao Charles Xuejin. Existence of Multiple solutions for-△u-μu/|x|^2=u^2^*-1+σf(x).Math Meth Appl Sci, 2002, 25:1307-1336
  • 9Evans L C. Partial Differential Equations. G S M Vol 19. Providence RI: American Mathematical Society, 1998. 508-511
  • 10Tarantello G. On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann Inst H Poincáre Anal Non Linéaire, 1992, 9:243-261

共引文献10

同被引文献6

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部