期刊文献+

Effect of carbon addition on creep behavior of cast TiAl alloy with hard-oriented directional lamellar microstructure 被引量:1

原文传递
导出
摘要 Two TiAl alloys,Ti-47.5Al-3.7(Cr,V,Zr)and Ti-47.5Al-3.7(Cr,V,Zr)-0.1C(at.%),were prepared by cold crucible levitation melting to couple the hard-oriented directional lamellar microstructure with carbon microalloying strengthening.The creep behavior and mechanism for the improvement in creep properties by carbon addition were investigated by mechanical tests and electron microscopy characterizations.The results show that obvious improvements on the creep properties at 760°C and 276 MPa are achieved by 0.1 at.%C addition into TiAl alloy with directional lamellar microstructure,which promotes the creep strain and minimum creep rate decreasing with a large content.The minimum creep rate is reduced from 4.37×10^(-8) to 3.97×10^(-9) s^(-1),and the duration entering into creep acceleration is prolonged for more than 10 times.The mechanism for creep property improvement by 0.1%C addition is attributed to two aspects.The first one is that Ti_(2) AlC is found to be strong obstacles of 1/2[110]dislocations when moving across the lamellar interface in the carbon containing alloy.The other one is that the in terfacial dislocatio ns are effectively impeded and the release process is hindered by dynamic precipitation of Ti_(3) AlC,which is proposed to be the special mechanism for creep resistance improvement of this hard-oriented directional lamellar microstructure.
出处 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2020年第11期1347-1356,共10页 钢铁研究学报(英文版)
基金 National Natural Science Foundation of China(51788104,51390471,51527803 and 51761135131) National 973 Project of China(2015CB654902) National Key Research and Development Pro gram(2016YFB0700402)。
  • 相关文献

参考文献1

共引文献3

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部