期刊文献+

基于小波包分解的LS-SVM-ARIMA组合降水预测 被引量:19

Precipitation prediction using LS-SVM and ARIMA combined model based on wavelet packet decomposition
下载PDF
导出
摘要 针对降水量影响因素众多,是一种复杂的非平稳、非线性且存在噪声问题的时间序列的特点,提出一种基于小波包分解的LS-SVM与ARIMA组合模型的年降水量预测方法。利用小波包将降水序列分解成低频趋势序列和高频细节序列;应用LS-SVM模型预测低频趋势序列,ARIMA模型预测高频细节序列;将两个模型的预测结果叠加,得到年降水量的预测值。实例验证表明:小波包对时间序列的分解比小波分解更精细,组合模型预测能够全面的提取降水序列中所包含的信息,更好地反映年降水量随时间变化规律,提高了年降水量预测的精准度,为降水量预测提供一种新方法。 An annual precipitation prediction method is proposed based on wavelet packet decomposition of LS-AVM and ARIMA combined model because the precipitation has a complex non-stationary,nonlinear,and noisy time series.The wavelet packet is used to decompose the precipitation sequence into a low-frequency trend sequence and high-frequency detail sequence.The LSSVM model is used to predict the low-frequency trend sequence,and the ARIMA model is used to predict the high-frequency detail sequence.The prediction results of the two models are superimposed to get the predicted value of annual precipitation.The case study shows that:the decomposition of time series by wavelet packet is more precise than the wavelet decomposition,the combined model prediction can comprehensively extract the information contained in the precipitation sequence,better reflect the change of precipitation with time,and improve the annual precipitation forecast which provides a new method for the prediction of precipitation.
作者 徐冬梅 张一多 王文川 XU Dongmei;ZHANG Yiduo;WANG Wenchuan(School of Water Resources,North China University of Water Resources and Electric Power,Zhengzhou 450046,China)
出处 《南水北调与水利科技(中英文)》 CAS 北大核心 2020年第6期71-77,共7页 South-to-North Water Transfers and Water Science & Technology
基金 河南省高校科技创新团队(18IRTSTHN009) 河南省重点研发与推广专项(202102310259) 国家自然科学基金(51509088 51709108)。
关键词 降水预测 小波包分解 LS-SVM模型 ARIMA模型 金沙县 precipitation forecast wavelet packet transform LS-SVM model ARIMA model Jinsha county
  • 相关文献

参考文献21

二级参考文献203

共引文献351

同被引文献248

引证文献19

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部