期刊文献+

Lévy跳扩散过程下选择期权的定价

Pricing Chooser Options Under Lévy Jump-diffusion Processes
原文传递
导出
摘要 考虑了当资产价格服从指数Lévy跳扩散过程时选择期权的定价.首先运用均值修正的方法构造了风险中性测度.其次运用风险中性定价原理及测度变换的方法得到了选择期权的定价公式,此定价公式用对数收益的特征函数的积分表示,其形式相较于级数形式较为简单.最后讨论了模型中参数的估计及到期日、执行价格对期权价格的影响. The aim of this paper is to study the pricing of chooser options on the assumption that the underlying asset’s price follows exponential Lévy jump-diffusion processes.We first construct a risk-neutral measure by correcting the mean.Secondly,by using the risk-neutral pricing principle and measure transform,we obtain the pricing formula of chooser options which is expressed into the integral of the characteristic function of the logarithmic return and has simpler form than the series.The estimates of parameters in the model,the effects of expiration date and strike price on the price of options are discussed at the end.
作者 王心悦 李翠香 WANG Xin-yue;LI Cui-xiang(School of Mathematical Sciences,Hebei Normal University,Shijiazhuang 050024,China)
出处 《数学的实践与认识》 北大核心 2020年第22期95-102,共8页 Mathematics in Practice and Theory
基金 国家自然科学基金(11571089) 河北省教育厅重点基金(ZD2018065,ZD2019053)。
关键词 Lévy跳扩散过程 选择期权 风险中性测度 特征函数 测度变换 lévy jump-diffusion processes chooser options risk-neutral measure characteristic function measure transform
  • 相关文献

参考文献3

二级参考文献24

  • 1袁国军,杜雪樵.跳-扩散模型中回望期权的定价研究[J].合肥工业大学学报(自然科学版),2006,29(10):1302-1305. 被引量:9
  • 2Deng Guohe.PRICING EUROPEAN OPTION IN A DOUBLE EXPONENTIAL JUMP-DIFFUSION MODEL WITH TWO MARKET STRUCTURE RISKS AND ITS COMPARISONS[J].Applied Mathematics(A Journal of Chinese Universities),2007,22(2):127-137. 被引量:13
  • 3Duncan T. E. , Hu Y. and Pasik-Duncan B. Stochastic calculus for fractional Brownian motion[J]. I. Theo- ry. SIAM J. Control Optim,2000,38,582 - 612.
  • 4Hu, Ok.sendal . Fractional white noise calculus and applications to finance ~ J ~. Inf. Dim. Ananlysis, Quantum Probab. Rel. Topics,2003, 6,1 - 32.
  • 5Elliott R. J. , Van der Hock J. A general fractional white noise theory and applications to finance[J]. Mathematical Finance,2003,2,301 - 330.
  • 6Rostek S, Schobel R. Risk preference based option pricing in a fractional Brownian market[J]. Applied Probability Trust,2007, 30,1 - 29.
  • 7Hu ,Biagini, Oksendal,Zhang,Stochastic calculus for fractional Brownian motion and applications[ M]. Springer - Vedag, London ,2008.
  • 8Necula C. A Framework for Derivative Pricing in the Fractional Black -Scholes Market[J]. http://papers, ssrn.com/sol3/papers, cfm? absL,-aet_id = 1289406. ,2007.
  • 9Ralf Kom, Elke Kom. Option Pricing and Portfolio Optimization [ M]. Modem methods of financial mathematoca, 2000.
  • 10RUBINSTEIN M. Options for the undecided[J]. Risk,1991,4(4) :43.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部