期刊文献+

拉应力对热轧复合板界面组织的影响

Influence of Tensile Stress on Interface Microstructure of Hot rolling Clad Plate
下载PDF
导出
摘要 以5.5mm厚的Q235A碳钢板材为基材,2.5 mm厚的304奥氏体不锈钢板为覆材,制备了碳钢/不锈钢复合板。研究了单道次轧制碳钢/不锈钢真空复合板界面组织及拉应力对界面组织的影响。结果表明:热轧复合板界面析出片状碳化物,随轧制压下率增加,片状碳化物更加密集。在318 MPa屈服应力作用下,复合板基板表面产生韧窝,片状碳化物基本未断裂;在345.5 MPa应力作用下,基材裂缝变得宽而深,碳化物断裂;试样受到368.97 MPa应力作用时,碳钢表面碳化物受力后碎裂,凹坑数量增加,深度减小。在384.73 MPa(抗拉强度)应力作用下,试样的韧窝密集而细小,粒子碎裂成为小块,基体中产生了很多破坏性裂纹。 The carbon steel/stainless steel clad plates were prepared with 5.5 mm thick Q235A carbon steel plate as substrate and 2.5 mm thick 304 austenitic stainless steel plate as cladding material. The effect of tensile stress on the interface structure of carbon steel/stainless steel vacuum clad plate prepared by single rolling was studied. The results show that flaky carbides precipitate in the interface, and it is denser with reduction rate increasing. The surface of the base plate produces dimples at 318 MPa yield stress, and the flaky carbides are basically not broken. The surface cracks of the base plate become wide and deep, and the carbides break under the action of 345.5 MPa stress. The carbides in the carbon steel surface crack under the action of 368.97 MPa stress, but the number of dimples increases and its depth decreases. Under the 384.73 MPa(tensile strength)stress, the dimples of the samples are dense and small, the particles are broken into small pieces,and the matrix produces many destructive cracks.
作者 李海斌 帅美荣 王强 王建梅 LI Haibin;SHU Al Meirong;WANG Qiang;WANG Jianmei(Heavy Machinery Engineering Research Center of Education Ministry,Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处 《热加工工艺》 北大核心 2020年第21期11-14,18,共5页 Hot Working Technology
基金 国家自然科学基金项目(51875382) 山西省重点研发计划项目(201903D121043) 太原科技大学博士启动金项目(20182006)。
关键词 复合板制备 界面组织 拉应力 clad plate preparation interface structure tensile stress
  • 相关文献

参考文献4

二级参考文献25

  • 1XIAO Xiao-feng1,2, YE Sheng-ping2, YIN Wei-xin3, XUE Qiong4 (1. School of Mechanical Engineering and Automation, Wuhan Textile University, Wuhan 430073, Hubei, China,2. State Key Laboratory of Material Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China,3. Wuhan Zhike Abrasive-Resistant Material Science and Technology Development Co Ltd, Wuhan 430073, Hubei, China,4. College of Science, Wuhan University of Technology, Wuhan 430079, Hubei, China).HCWCI/Carbon Steel Bimetal Liner by Liquid-Liquid Compound Lost Foam Casting[J].Journal of Iron and Steel Research International,2012,19(10):13-19. 被引量:11
  • 2李喜,任忠鸣,王立龙,余建波,邓康,徐匡迪.强磁场对Bi-6%Mn合金中MnBi相形态和相变的影响[J].金属学报,2006,42(1):77-82. 被引量:3
  • 3彭良贵,朱伏先,刘相华.柔性生产策略在热轧带钢控冷过程中的应用[J].钢铁研究,2007,35(1):33-37. 被引量:4
  • 4HONG S T, WElL K S. Niobium-clad 304L stainless steel PEMFC bipolar plate material: Tensile and bend properties [J]. Journal of Power Sources, 2007, 168(2): 408 417.
  • 5ASTM E8-04 [S].
  • 6LIN M, CHENG Y, LIN M, YEN S. Evaluation of PEMFC power systems for UPS base station applications [J]. Journal of Power Sources, 2005, 140(2): 346-349.
  • 7Department of materials science and metallurgy, university of cambridge. DolTPoMS TLP-fuel cells-proton exchange membrane fuel cells [EB/OL]. http://www.msm,cam.ac.uk/doitpoms/tlplib/fuelcells/low_tempjpem.php (2009 April 8th),.
  • 8LI X, SABIR I. Review of bipolar plates in PEM fuel cells: Flow-field designs [J]. International Journal of Hydrogen Energy, 2005, 30(4): 359-371.
  • 9HERMANN A, CHAUDHURI T, SPAGNOL P. Bipolar plates for PEM fuel cells: A review [J]. International Journal of Hydrogen Energy, 2005, 30(12): 1297-1302.
  • 10HORNUNG R, KAPPELT G. Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells [J]. Journal of Power Sources, 1998, 72(1): 20-21.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部