期刊文献+

拉伸温度和应变速率对细晶纯镁力学行为和微观组织的影响 被引量:2

Effect of Tensile Temperature and Strain Rate on Mechanical Behavior and Microstructure of Fine Grain Pure Magnesium
下载PDF
导出
摘要 在冰水条件下利用四道次等通道转角挤压(ECAP)制备细晶纯镁,并进行中高温拉伸试验。研究了经ECAP变形后纯镁在拉伸温度为室温至250℃和应变速率为3.33×10^-4、6.67×10^-4、3.33×10^-3s^-1下的力学行为及微观组织演变。结果表明:峰值应力随拉伸温度的升高和应变速率的降低而下降。当应变速率为3.33×10^-4s^-1,断裂伸长率随拉伸温度的上升先升高后降低;当拉伸温度为200℃,断裂伸长率达到最大98.3%,而在250℃有所下降,从断口形貌来看,这是由于微裂纹的形成恶化了塑性。 Fine grain pure Mg was prepared by four passes equal channel angular pressing(ECAP) at the ice-water temperature. The mechanical behavior and the evolution of microstructure of ECAP processed Mg in the range from room temperature(RT) to 250 ℃ and strain rates of 3.33×10^-4 s^-1, 6.67×10^-4 s^-1, 3.33×10^-3 s^-1 were investigated. The results show that the peak stress decreases with the increase of tensile temperature and the decrease of strain rate. When the strain rate is 3.33 ×10^-4 s^-1, the fracture elongation first increases and then decreases with the increase of tensile temperature. The specimen exhibits the best fracture elongation, reaching 98.3% at tensile temperature of 200 ℃, but the fracture elongation decreases at 250℃. The fracture morphology indicates that the deterioration of the plasticity is mainly due to the formation of micro-cracks.
作者 左代 冯壹君 聂慧慧 梁伟 杨福前 ZUO Dai;FENG Yijun;NIE Huihui;LIANG Wei;YANG Fuqian(College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan 030024,China;Department of Chemical and Materials Engineering,University of Kentucky,Lexington KY40506,USA)
出处 《热加工工艺》 北大核心 2020年第22期57-62,共6页 Hot Working Technology
基金 国家自然科学基金资助项目(51474152)。
关键词 纯镁 等通道转角挤压 拉伸温度 应变速率 织构 pure Mg equal channel angular pressing(ECAP) tensile temperature strain rate texture
  • 相关文献

参考文献2

二级参考文献23

  • 1Ming-Hung Tsai, May-Show Chen, Ling-Hung Lin, Ming-Hong Lin, Ming-Hong Lin, Ching-Zong Wu, Keng-Liang Ou, Chih-Hua Yu, Effect of heat treatment on the microstructures and damping properties of biomedical Mg - Zr alloy, Journal of Alloys and Com- pounds, 509, 813(2011 ).
  • 2Y. Estrin, A. Vinogradov, Extreme grain refinement by severe plas- tic deformation: A wealth of challenging science, Acta Materialia, 61(3), 782(2013).
  • 3Jinbao Lin, Qudong Wang, Liming Peng, Hans J. Roven, Micro- structure and high tensile ductility of ZK60 magnesium alloy pro- cessed by cyclic extrusion and compression, Journal of Alloys and Compounds, 476(1-2), 441(2009).
  • 4Tao Peng, Qudong Wang, Jinbao Lin, Manping Liu, Hans J. Roven, Microstructttre and enhanced mechanical properties of an Mg - 10Gd-2Y-0.5Zr alloy processed by cyclic extrusion and compres- sion, Materials Science and Engineering A, 528(3), 1143(2011).
  • 5Jinbao Lin, Qudong Wang, Yongjun Chen, Manping Liu, H. J. Rov- en, Microstructure and texture characteristics of ZK60 Mg alloy processed by cyclic extrusion and compression, Transactions of Nonferrous Metals Society of China, 20(11), 2081(2010).
  • 6Y. J. Chen, Q. D. Wang, H. J. Roven, M. Karlsen, Y. D. Yu, M. P. Liu, J. Hjelen, Microstructure evolution in magnesium alloy AZ31 during cyclic extrusion compression, Journal of Alloys and Com- pounds, 462(1-2), 192(2008).
  • 7Changpeng Wang, Huangsheng Mei, Rongqiang Li, Ling Wang, Jie Liu, Zehui Hua, Lijin Zhao, Feifei Pen, Hui Li, Microstructure evo- lution and grain coarsening behaviour during partial remelting of cyclic extrusion compression formed AZ61 magnesium alloy, Acta Metallurgica Sinica (English Letters), 26(2), 149(2013).
  • 8A. Azushima, R. Kopp, A. Korhonen, D. Y. Yang, F. Micari, G. D. Lahoti, P. Groche, J. Yanagimoto, N.Tsuji, A. Rosochowki, A. Yanagida, Severe plastic deformation (SPD) processes for metals, CIRP Annals - Manufacturing Technology, 57(2), 716(2008).
  • 9H. Zhou, W. Z. Xu, W. W. Jian, G. M. Cheng, X. L. Ma, W. Guo, S.N. Mathaudhu, Q. D. Wang, Y. T. Zhu, A new metastable precipi- tate phase in Mg - Gd - Y - Zr alloy, Philosophical Magazine, 94 (21 ), 2403 -2409(2014).
  • 10W. W. Jian, G. M. Cheng, W. Z. Xu, H. Yuan, M. H. Tsai, Q. D. Wang, C. C. Koch, Ultrastrong Mg alloy via nano-spaced stacking faults, Materials Research Letters, 12(3), 37-41(2013).

共引文献2

同被引文献29

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部