期刊文献+

基于地理空间数据的Hedonic房价指数构建 被引量:1

Constructing Hedonic Housing Price Index Based on Geospatial Data
下载PDF
导出
摘要 在基于OLS的传统Hedonic房价指数构建中,房价的地理位置坐标没有被纳入模型,使观测个体之间的空间相关问题被忽略,也导致了模型中估计的参数和构建的Hedonic房价指数的偏误。文章将空间计量经济模型(SEM和SLM)和空间广义可加模型(GAM)应用于分析天津二手住宅交易数据,能够提高传统Hedonic模型的拟合与预测能力,进而提高房价指数估计精度。结果表明,传统Hedonic房价指数在房价较平稳时期有效,但在快速上涨时期因不能对交易住宅的地理位置质量变动进行完全地调整会低估房价指数。 In the construction of the traditional Hedonic housing price index based on OLS(Ordinary Least Squares),the geographic coordinates of housing price are not included in the model,which ignores the spatial correlation between the observed individuals and results in biased error of estimated parameters and the constructed Hedonic housing price index in the model.This paper utilizes two basic spatial econometric models(spatial error model and spatial lag model)and spatial generalized additive model(GAM)to analyze Tianjin second-hand housing transaction data,which improves the fitting and prediction ability of traditional Hedonic model,thus improving the prediction accuracy of housing price index.The results show that traditional Hedonic housing price index is valid when the housing prices are stable,but that the index is underestimated when the housing prices rise dramatically due to the failure to fully adjust the geospatial coordinates’quality changes of transacted residences.
作者 苏瑞娟 赵博娟 Su Ruijuan;Zhao Bojuan(School of Statistics,Tianjin University of Finance and Economics,Tianjin 300222,China;School of Data Engineering,Tianjin University of Finance and Economics Pearl River College,Tianjin 301811,China)
出处 《统计与决策》 CSSCI 北大核心 2020年第23期9-14,共6页 Statistics & Decision
关键词 地理空间数据 Hedonic回归模型 Hedonic估计方法 空间计量经济模型 空间广义可加模型 geospatial data Hedonic regression model Hedonic estimation method spatial econometric model spatial generalized additive model
  • 相关文献

参考文献2

二级参考文献6

共引文献7

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部