期刊文献+

幅度信息辅助的GM-PHD-UKF弱小多目标跟踪算法 被引量:2

An Algorithm of Weak Multi-target Tracking Based on GM-PHD-UKF with Amplitude Information
下载PDF
导出
摘要 针对弱小目标雷达散射面积小、回波能量弱、在跟踪过程中虚警杂波数较多,容易产生误跟、漏跟的问题,提出了一种幅度信息辅助的无迹高斯混合概率假设滤波(GM-PHD)算法。该算法通过建立弱小目标与虚警杂波的幅度似然函数,利用幅度信息提升目标与杂波的识别度,改善多目标的状态估计与势估计。此外,该算法还使用无迹卡尔曼滤波(UKF)进行扩展,以适应非线性的跟踪情况。仿真结果表明,相比于传统的高斯混合概率假设滤波,所提算法拥有更佳的多目标状态估计与势估计性能。 In view of small radar scattering area and weak echo energy of weak targetswhich lead to a large number of false-alarm clutters in the tracking process and the problem of false tracking and missed trackingthis paper proposes a GM-PHD algorithm assisted by amplitude information.By establishing amplitude likelihood functions of the weak target and the false-alarm clutterthe algorithm uses the amplitude information to improve the recognition rate of the target and the clutterand improves the state estimation and potential estimation of the multiple targets.In additionthe algorithm is extended by Unscented Kalman Filtering(UKF)to adapt to nonlinear tracking.The simulation results show that the proposed algorithm has better performance on the multi-target's state estimation and potential estimation than the traditional algorithm of Gaussian mixture probability hypothesis filtering.
作者 聂泽东 汪圣利 NIE Zedong;WANG Shengli(Nanjing Research Institute of Electronics Technology,Nanjing 210013,China)
出处 《电光与控制》 CSCD 北大核心 2020年第12期41-44,共4页 Electronics Optics & Control
关键词 幅度信息辅助 高斯混合概率假设滤波 多目标跟踪 无迹卡尔曼滤波 amplitude information assistance Gaussian mixture probability hypothesis filtering multi-target tracking unscented Kalman filtering
  • 相关文献

参考文献5

二级参考文献48

  • 1A Johansen, S Singh, A Doucet, B Vo. Convergence of the SMC implementation of the PHI) filter [J]. Methodology and Computing in Applied Probability (S0951-9211), 2006, 8(2): 265-291.
  • 2Y Bar-Shalom, X R Li. Multitarget-Multisensor Tracking: Principles and Techniques [M]. Storrs, CT, USA: YBS Publishing, 1995.
  • 3RONALD P S MAHLER. Statistics 101 for Multisensor, Multitarget Data Fusion [J]. 1EEE Transactions on Aerospace and Electronic Systems (S0885-8985), 2004, 19(1): 53-64.
  • 4R Mahler. A theoretical foundation for the Stein-Winter Probability Hypothesis Density (PHD) multi-target tracking approach [C]//Proc. -MSS Nat'l Syrup. on Sensor and Data Fusion, San Antonio, TX, USA, June 2002. USA: 2002.
  • 5Ba-Tuong Vo, Ba-Ngu Vo, Antonio Cantoni. Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter [J]. IEEE Transactions on Signal Processing (S1053-587X), 2007, 55(7): 3553-3567.
  • 6K Panta, B Vo, S Singh, A Doueet. Probability hypothesis density filter versus multiple hypothesis tracking [C]// Proceedings of SPIE- Volume Signal Processing, Sensor Fusion, and Target Recognition, ⅩⅢ, Ivan Kadar, Editior, August 2004. USA: SPIE, 2004, 5249: 284-295.
  • 7D J Daley, D Vere-Jones. An introduction to the theory of point processes [M]. Germany: Springer, 1988.
  • 8I Goodman, R Mahler, H Nguyen. Mathematics of Data Fusion [M]. Boston, USA: Kluwer Academic Publishers, 1997.
  • 9B Vo, W K Ma. A closed-form solution to the probability hypothesis density filter [C]// Information Fusion, 2005 8th International Conference on 25-28 July 2005 (ISBN: 0-7803-9286-8).
  • 10B Vo, W K Ma. The Gaussian Mixture Probability Hypothesis Density Filter [J]. IEEE Transactions on Signal Processing (S1053-587X), 2006, 54(11): 4091-4104.

共引文献28

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部