摘要
针对弱小目标雷达散射面积小、回波能量弱、在跟踪过程中虚警杂波数较多,容易产生误跟、漏跟的问题,提出了一种幅度信息辅助的无迹高斯混合概率假设滤波(GM-PHD)算法。该算法通过建立弱小目标与虚警杂波的幅度似然函数,利用幅度信息提升目标与杂波的识别度,改善多目标的状态估计与势估计。此外,该算法还使用无迹卡尔曼滤波(UKF)进行扩展,以适应非线性的跟踪情况。仿真结果表明,相比于传统的高斯混合概率假设滤波,所提算法拥有更佳的多目标状态估计与势估计性能。
In view of small radar scattering area and weak echo energy of weak targetswhich lead to a large number of false-alarm clutters in the tracking process and the problem of false tracking and missed trackingthis paper proposes a GM-PHD algorithm assisted by amplitude information.By establishing amplitude likelihood functions of the weak target and the false-alarm clutterthe algorithm uses the amplitude information to improve the recognition rate of the target and the clutterand improves the state estimation and potential estimation of the multiple targets.In additionthe algorithm is extended by Unscented Kalman Filtering(UKF)to adapt to nonlinear tracking.The simulation results show that the proposed algorithm has better performance on the multi-target's state estimation and potential estimation than the traditional algorithm of Gaussian mixture probability hypothesis filtering.
作者
聂泽东
汪圣利
NIE Zedong;WANG Shengli(Nanjing Research Institute of Electronics Technology,Nanjing 210013,China)
出处
《电光与控制》
CSCD
北大核心
2020年第12期41-44,共4页
Electronics Optics & Control
关键词
幅度信息辅助
高斯混合概率假设滤波
多目标跟踪
无迹卡尔曼滤波
amplitude information assistance
Gaussian mixture probability hypothesis filtering
multi-target tracking
unscented Kalman filtering