期刊文献+

语义关系下英语复杂长句机器翻译算法优化 被引量:3

Optimization of machine translation algorithm for English complex long sentences based on semantic relations
下载PDF
导出
摘要 传统机器翻译算法对英语复杂长句的翻译准确率低、回收率高,针对这一难题,提出了基于语义关系的机器翻译算法。该算法通过长句内分句(短语)之间的语义层次关系,构建基于相似度的语义网络模型,结合余弦相似度和带权向量加法计算获得翻译结果,利用权重训练获得关键短语。以NIST 06和NIST 08测试集为例,基于语义关系的英语复杂长句机器翻译算法测试BLEU值比传统算法分别提高了0.35和0.23,即翻译结果的准确率提高,回收率降低。 Aiming at the low accuracy and high recovery rate for the translation of complex long sentences from English in traditional machine translation algorithms,it proposes a machine translation algorithm based on semantic relations.The algorithm constructs a semantic network model of the translation similarity model through the semantic hierarchical relationship within the long sentence,combines the cosine similarity and the weighted vector addition calculation to obtain the translation result,and uses the weight training to obtain the key phrase.The results show that the semantic relationship-based machine translation algorithm for English complex long sentences can optimize the translation results,and the test BLEU value increases by 0.35 and 0.23,that is,the accuracy of the translation results is improved,and the recovery rate is reduced.
作者 王红利 Wang Hongli(Shaanxi Police Vocational College, Shaanxi Xi'an, 710021, China)
出处 《机械设计与制造工程》 2020年第12期118-120,共3页 Machine Design and Manufacturing Engineering
关键词 语义关系 英语复杂长句 机器翻译 semantic relations long English sentences machine translation
  • 相关文献

参考文献9

二级参考文献60

共引文献58

同被引文献36

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部