摘要
为改进电气化铁路接触网补偿器监测装置在光照不足时对图像目标区域分割精度较低,无法准确识别入侵异物的问题,采用全局自适应色调映射的方法增强低照度图像,联合改进的果蝇算法与K⁃Means聚类算法(IFOA⁃K⁃Means聚类算法)实现目标区域的准确分割。实验结果表明,该方法对退化图像的分割精度更高,能够充分保持图像的边缘信息,运算开销较小,能有效提高图像后续处理的效率。
The monitoring device of electrified railway catenary compensator has low segmentation accuracy of the image target area when illumination is insufficient,so it is impossible to accurately identify the invading foreign objects.In view of this,a global adaptive tone mapping method is adopted to enhance the low⁃light⁃level image,and realize accurate segmentation of target area by combining the improved fruit fly optimization algorithm and the K⁃Means clustering algorithm(IFOA⁃K⁃Means clustering algorithm).The experimental results show that the method based on IFOA⁃K⁃Means clustering algorithm has higher segmentation precision for degraded image,can fully maintain the edge information of the image,has less operation,and effectively improve the efficiency of image subsequent processing.
作者
李苏晨
王硕禾
唐卓
刘旭
LI Suchen;WANG Shuohe;TANG Zhuo;LIU Xu(Shijiazhuang Tiedao University,Shijiazhuang 050043,China)
出处
《现代电子技术》
2021年第1期45-48,共4页
Modern Electronics Technique
基金
中国铁路总公司科技研究开发计划项目(P2018G006)
河北省教育厅重点科研项目(ZD2018217)
石家庄铁道大学创新创业项目(YC2019066)。
关键词
电气化铁路
图像照度增强
图像分割
色调映射
果蝇算法
K⁃Means聚类算法
入侵物识别
electrified railway
image illumination enhancement
image segmentation
tone mapping
fruit fly optimization algorithm
K⁃Means clustering algorithm
intruding object recognition