期刊文献+

一种融合IFOA和K⁃Means聚类的低照度图像分割方法 被引量:4

Method of low⁃light⁃level image segmentation based on integration of IFOA and K⁃Means clustering
下载PDF
导出
摘要 为改进电气化铁路接触网补偿器监测装置在光照不足时对图像目标区域分割精度较低,无法准确识别入侵异物的问题,采用全局自适应色调映射的方法增强低照度图像,联合改进的果蝇算法与K⁃Means聚类算法(IFOA⁃K⁃Means聚类算法)实现目标区域的准确分割。实验结果表明,该方法对退化图像的分割精度更高,能够充分保持图像的边缘信息,运算开销较小,能有效提高图像后续处理的效率。 The monitoring device of electrified railway catenary compensator has low segmentation accuracy of the image target area when illumination is insufficient,so it is impossible to accurately identify the invading foreign objects.In view of this,a global adaptive tone mapping method is adopted to enhance the low⁃light⁃level image,and realize accurate segmentation of target area by combining the improved fruit fly optimization algorithm and the K⁃Means clustering algorithm(IFOA⁃K⁃Means clustering algorithm).The experimental results show that the method based on IFOA⁃K⁃Means clustering algorithm has higher segmentation precision for degraded image,can fully maintain the edge information of the image,has less operation,and effectively improve the efficiency of image subsequent processing.
作者 李苏晨 王硕禾 唐卓 刘旭 LI Suchen;WANG Shuohe;TANG Zhuo;LIU Xu(Shijiazhuang Tiedao University,Shijiazhuang 050043,China)
机构地区 石家庄铁道大学
出处 《现代电子技术》 2021年第1期45-48,共4页 Modern Electronics Technique
基金 中国铁路总公司科技研究开发计划项目(P2018G006) 河北省教育厅重点科研项目(ZD2018217) 石家庄铁道大学创新创业项目(YC2019066)。
关键词 电气化铁路 图像照度增强 图像分割 色调映射 果蝇算法 K⁃Means聚类算法 入侵物识别 electrified railway image illumination enhancement image segmentation tone mapping fruit fly optimization algorithm K⁃Means clustering algorithm intruding object recognition
  • 相关文献

参考文献8

二级参考文献54

  • 1於跃成,刘彩生,生佳根.分布式约束一致高斯混合模型[J].南京理工大学学报,2013,37(6):799-806. 被引量:3
  • 2陶唐飞,韩崇昭,代雪峰,段战胜.综合边缘检测和区域生长的红外图像分割方法[J].光电工程,2004,31(10):50-52. 被引量:24
  • 3彭国福,林正浩.图像处理中GAMMA校正的研究和实现[J].电子工程师,2006,32(2):30-32. 被引量:49
  • 4FAHIM A.M,SALEM A.M,TORKEY F.A,RAMADAN M.A.An efficient enhanced k-means clustering algorithm[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2006,7(10):1626-1633. 被引量:30
  • 5Edwin H Land. The Retinex Theory of Color Vision [ J ]. Scientific American, 1977,237 : 108-128.
  • 6Edwin H Land. An Alternative Technique for the Computation of the Designator in the Retinex Theory of Color Vision [ C ]. USA : Proc of the National Academy of Science, 1986. 3078- 3080.
  • 7D J Jobson, Z Rahman, G A Woodell. Properties and Performance of a Center/Surround Retinex[J]. IEEE Transactions on Image Processing, 1997,6 ( 3 ) :451-462.
  • 8D H Brainard, B A Wandell. Analysis of the Retinex Theory of Color Vision[ J]. Journal of the Optical Society of America, 1986,3(10) :1651-1661.
  • 9D J Jobson, Z Rahman, G A Woodell. Retinex Image Processing: Improved Fidelity to Direct Visual Observation[ C]. Scottsdale, USA: Proceedings of IS&T/SID 4th Color Imaging Conference: Color Science, Systems and Applications, 1996.124-126.
  • 10B Funt,K Barnard,et al. Luminance-Based Multi-Scale Retinex[ C].Kyoto, Japan : Proceedings of AIC Color 97,1997. 330- 333.

共引文献158

同被引文献42

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部