期刊文献+

基于果蝇优化算法的柔性工艺规划问题研究

Research on Flexible Process Planning Based on Fruit Fly Optimization Algorithm
下载PDF
导出
摘要 针对以最小加工时间为目标的柔性工艺规划问题,提出一种改进的果蝇优化算法求解该问题。为了适应工艺规划问题的求解,增强算法的搜索性能,在嗅觉搜索阶段采用交换、插入、变异,三种操作进行邻域搜索。在视觉搜索阶段,种群中的所有个体都通过选择最优邻域解对自身进行更新。并且增加了全局协作机制,加强种群个体之间的相互协作,提高果蝇优化算法的全局寻优能力。最后,进行实例仿真测试,将仿真结果与其他算法所得结果进行对比分析,验证了果蝇优化算法在解决柔性工艺规划问题上的高效性。 Aiming at the flexible process planning problem with minimum processing time,an improved fruit fly optimization algorithm is proposed to solve the problem.In order to adapt to the problem solving of process planning and enhance the search performance of the algorithm,three operations,exchange,insertion and mutation,were used in olfactory search phase to search neighborhood.In the visual search stage,all individuals in the population update themselves by selecting the optimal neighborhood solution.It also increases the global collaboration mechanism,strengthens the cooperation among individual individuals,and improves the global optimization ability of the fruit fly optimization algorithm.Finally,an example simulation test is carried out,and the simulation results are compared with the results obtained by other algorithms,which verifies the efficiency of the fruit fly optimization algorithm in solving the flexible process planning problem.
作者 李强 LI Qiang(School of Mechanical Engineering,Shenyang University,Shenyang 110041,China)
出处 《价值工程》 2020年第34期247-249,共3页 Value Engineering
关键词 柔性工艺规划 果蝇优化算法 邻域搜索 全局协作机制 flexible process planning fruit fly optimization algorithm neighborhood search global cooperation mechanism
  • 相关文献

参考文献3

二级参考文献28

  • 1王进峰,范孝良,宗鹏程,万书亭.一种改进的蚁群算法在工艺规划与车间调度集成优化中的应用[J].图学学报,2014,35(3):396-401. 被引量:5
  • 2王忠宾,王宁生,陈禹六.基于遗传算法的工艺路线优化决策[J].清华大学学报(自然科学版),2004,44(7):988-992. 被引量:38
  • 3崔建双,李铁克,张文新.混合流水车间调度模型及其遗传算法[J].北京科技大学学报,2005,27(5):623-626. 被引量:29
  • 4Wang Y F, Zhang Y F, Fuh J Y H. A hybrid particle swarm based method for process planning optimization [J]. International Journal of Production Research, 2012, 50(1): 277-292.
  • 5Zhang F, Zhang Y F, Nee A Y C. Using genetic algorithms in process planning for job shop machining [J]. IEEE Transactions on Evolutionary Computation, 1997, 1(4): 278-289.
  • 6Li W D, Ong S K, Nee A Y C. Hybrid genetic algorithm and simulated annealing approach for the optimization of process plans for prismatic parts [J]. International Journal of Production Research, 2002, 40(8): 1899-1922.
  • 7Yang X S. A new metaheuristic bat-inspired algorithm nature inspired cooperative strategies for optimization (NICSO) [J]. Studies in Computational Intelligence, 2010, 284: 65-74.
  • 8Li W D, Ong S K, Nee A Y C. Optimization of process plans using a constraint-based tabu search approach [J]. International Journal of Production Research, 2004, 42(10): 1955-1985.
  • 9Guo Y W, Mileham A R, Owen G W, et al. Operation sequencing optimization using a particle swarm optimization approach [J]. Proceedings of the Institution of Mechanical Engineers B: Journal of Engineering Manufacture, 2006, 220(12): 1945-1958.
  • 10周辉仁,唐万生,魏颖辉.柔性Flow-Shop调度的遗传算法优化[J].计算机工程与应用,2009,45(30):224-226. 被引量:20

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部