期刊文献+

基于Bayesian粗糙集和布谷鸟算法的肺部肿瘤高维特征选择算法 被引量:1

High-dimensional feature selection algorithm for lung cancer based on Bayesian rough set and cuckoo search
原文传递
导出
摘要 在高维特征选择过程中最优特征子集生成和分类器参数优化方面,提出一种基于贝叶斯粗糙集(BRS)、遗传算法(GA)和布谷鸟算法(CS)的两阶段优化高维特征选择算法。该算法首先分析3000例肺部肿瘤CT图像的形状、灰度和纹理特征,提取104维特征分量共同量化ROI;然后进行两阶段优化:(1)从全局相对增益函数的角度分析了属性重要度,结合属性约简长度和基因编码权值函数的加权和构造适应度函数,通过选择、交叉和变异等遗传操作生成最优特征子集,在不降低分类精确度的前提下降低特征维度;(2)利用CS对支持向量机(SVM)参数进行全局寻优;最后通过实验验证本文算法的可行性和有效性。实验结果表明,该算法有效提升了肺部肿瘤良恶性识别能力,降低了算法的时间复杂度。 In the high-dimensional feature selection process,the best feature subset generation and classifier parameter optimization were concerned.A two stage optimization algorithm for high-dimensional feature selection based on bayesian rough set(BRS),genetic algorithm(GA)and cuckoo search(CS)was proposed.Firstly,analyzed the shape,gray and texture features of 3000 lung tumor CT images,and extracted 104 dimensional feature components to jointly quantify ROI.Then the two phase optimization was carried out.(1)the attribute importance was analyzed from the global relative gain function,and the fitness function was constructed by combining the weight of the attribute reduction length,gene encoding weight function and the attribute importance.The best feature subset was generated through genetic operation of selection,crossover and mutation,and the feature dimension was reduced without reducing the accuracy of classification.(2)CS was used to optimize the parameters of support vector machine(SVM).Finally,the feasibility and effectiveness of the algorithm were verified by experiments.Experimental results show that the algorithm effectively improves the ability of identifying benign and malignant lung tumors and reduces the time complexity of the algorithm.
作者 周涛 陆惠玲 张飞飞 ZHOU Tao;LU Hui-ling;ZHANG Fei-fei(School of Computer Science and Engineering,North Minzu University,Yinchuan,ningxia 750021,China;NingxiaProvince Key Laboratory of Intelligent Information and Big Data Processing,Yinchuan 750021,China;Schoolof Science,Ningxia Medical University,Yinchuan 750004,China;China Telecom Corporation LimitedNingxia Branch,Yinchuan 750002,China)
出处 《光电子.激光》 EI CAS CSCD 北大核心 2020年第12期1288-1298,共11页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(62062003) 宁夏自治区重点研发计划项目(引才专项)(2020BEB04022) 北方民族大学引进人才科研启动项目(2020KYQD08)资助项目。
关键词 遗传算法 贝叶斯粗糙集 布谷鸟算法 支持向量机 特征选择 genetic algorithm Bayesian rough set cuckoo search support vector machine feature selection
  • 相关文献

参考文献8

二级参考文献69

  • 1彭文季,罗兴锜.基于粗糙集和支持向量机的水电机组振动故障诊断[J].电工技术学报,2006,21(10):117-122. 被引量:32
  • 2王亮,娄寿春,周林.地空导弹装备发展型号论证方案评价模型研究[J].装备指挥技术学院学报,2007,18(2):115-118. 被引量:3
  • 3张立军,刘菊红,刘丹.上市公司财务危机预警的Logistic回归分析[J].南昌大学学报(理科版),2007,31(3):242-245. 被引量:8
  • 4GB11607-89.渔业水质标准[S].[S].国家环境保护局,1989..
  • 5NY5052-2001.无公害食品海水养殖用水水质[s].北京:中华人民共和国农业部,2001.
  • 6VAPNIK V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.
  • 7YANG X S, DEB S. Cuckoo search via L'evy flights[C]// Proceedings of World Congress on Nature & Biologically Inspired Computing, IEEE Publications, USA, 2009: 210-214.
  • 8Koyuncugil A S, Ozgulbas N. Financial early warning system model and data mining application for risk detection[J]. Expert Systems with Applications, 2012, 39(6): 6238-6253.
  • 9Lopez V F, Medina S L, de Paz J F. Taranis: Neural networks and intelligent agents in the early warning against floods[J]. Expert Systems with Applications, 2012, 39(11): 10031-10037.
  • 10Yao Z H, Fei M R, Qu B D. Evolving neural networks for forecasting and early warning red tide and blue-green alga disaster[J]. Dynamics of Continuous Discrete and Impulsive Systemsseries A-Mathematical Analysis, 2006(13): 241-247.

共引文献374

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部