期刊文献+

移动边缘计算中一种多用户计算卸载方法 被引量:9

Multi-user computation offloading approach for mobile edge computing
下载PDF
导出
摘要 移动边缘计算中计算卸载技术将移动用户设备上的资源密集型应用程序卸载到边缘服务器,以解决移动设备在计算能力、存储容量以及能效等方面存在的不足。设计了一种移动边缘环境下能够联合优化多用户时延与移动边缘计算服务器资源分配平衡度的计算卸载方法。该方法以LTE应用为背景,首先设计了移动边缘计算系统模型;然后在此模型基础上,构造了联合优化平均卸载时延与资源分配平衡度的目标函数;最后,以最小化移动用户的卸载时延总和、同时平衡分配移动边缘计算服务器资源为目标,求解最优解,合理实施计算卸载。仿真结果表明,这种方法能够有效地减小多用户的平均卸载时延,同时平衡各移动边缘计算服务器的工作负荷。 Computation offloading technology in Mobile Edge Computing(MEC)offloads resource-intensive applications on mobile user devices to edge servers.It can solve the deficiencies of mobile devices in terms of computing power,storage capacity,and energy efficiency.Orienting to the LTE,a multi-user computation offloading approach for MEC environment is proposed,which can jointly optimize mobile users’delay and MEC servers’resource allocation balance.First,a mobile edge computing system model is designed,on the basis of which an objective function for jointly optimizing the average computation offloading delay and resource allocation balance is constructed.And then with the goal of minimizing the offloading delay of mobile users and allocating MEC server resources in a balanced manner,the optimal solution is solved,and the computation offloading is implemented reasonably.Simulation results show that the approach can effectively reduce the average offloading delay of multi-users,and balance the workload of MEC servers at the same time.
作者 张文柱 曹琲琲 余静华 ZHANG Wenzhu;CAO Beibei;YU Jinghua(School of Information and Control Engineering,Xi’an University of Architecture and Technology,Xi’an 710055,China;School of Telecommunications Engineering,Xidian University,Xi’an 710071,China)
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2020年第6期131-138,共8页 Journal of Xidian University
基金 国家自然科学基金(61473216) 陕西省自然科学基础研究计划(2020JM-489) 西安市科技计划(JZKD0010) 陕西省科协高端科技创新智库项目(18JT006)。
关键词 移动边缘计算 计算卸载 移动边缘计算服务器 卸载时延 mobile edge computing computation offloading mobile edge computing server offloading delay
  • 相关文献

参考文献1

二级参考文献59

  • 1Satyanarayanan M, Bahl P, Caeeres R, Davies N. The case for VM-based cloudlets in mobile computing. IEEE Pervasive Computing, 2009, 8(4) .. 14-23.
  • 2Othman M, Hailes S. Power conservation strategy for mobile computers using load sharing. Mobile Computing and Communications Review, 1998, 2(1) : 44-50.
  • 3Hunt G C, Scott M L. The Coign automatic distributed parti- tioning system//Proeeedings of the 3rd USENIX Symposium on Operating Systems Design and Implementation. New Orleans, USA, 1999.. 187-200.
  • 4Rudenko A, Reiher P, Popek G J, et al. Saving portable computer battery power through remote process execution. Mobile Computing and Communications Review, 1998, 2(1) : 19-26.
  • 5Weiser M. The computer for the 21st century. Scientific American, 1991, 265(3): 94-104.
  • 6Satyanarayanan M. Pervasive computing:Vision and challenges. IEEE Personal Communications, 2001, 8(4): 10-17.
  • 7Cuervo E, Balasubramanian A, Cho D, et al. MAUI: Making smartphones last longer with code offload//Proceedings of the 8th International Conference on Mobile Systems, Appli- cations, and Services. San Francisco, USA, 2010:49-62.
  • 8Kistler J J, Satyanarayanan M. Disconnected operation in the Coda file system. ACM Transactions on Computer Systems, 1992, 10(1): 3-25.
  • 9Balan R K, Satyanarayanan M, Park S Y, et al. Tactics- based remote execution for mobile computing//Prnceedings of the 1st International Conference on Mobile Systems, Applications and Services. San Francisco, USA, 2003: 273- 286.
  • 10Flinn J, Narayanan D, Satyanarayanan M. Self-tuned remote execution for pervasive computing//Proceedings of the 8th Workshop on Hot Topics in Operating Systems. Krtin, Germany, 2001:61-66.

共引文献37

同被引文献39

引证文献9

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部