期刊文献+

基于非参数方法的黑河地区森林地上生物量估算及时空格局 被引量:2

Estimation and Spatial-temporal Pattern of Forest above Ground Biomass in Heihe Region Based on Nonparametric Method
下载PDF
导出
摘要 以黑龙江省黑河地区2005年和2010年两期森林资源连续清查固定样地数据和Landsat TM5遥感影像为数据源,首先以2005年和2010年影像为研究对象,分别提取纹理、地形和气象因子共73个特征变量,依据均方差增量百分数%IncMSE(Increase Mean Squared Error%)指标筛选出前六个重要性变量;之后,分别以RF模型和传统的多元逐步回归模型估算森林AGB,并进行对比与分析;最后,对精度较高的模型分别估算两期黑河地区森林AGB并进行时空动态分析。研究结果表明:引入纹理因子RF模型可以一定程度提高模型精度,两期Radj^2分别为0.40和0.39,RMSE分别为27.41(t/hm2)和32.01(t/hm2),优于传统的多元逐步回归模型;黑河地区森林AGB整体呈现增长趋势,森林AGB大于80(t/hm2)的高生物量区域有较明显的增加,主要集中在东部和部分北部山地及中海拔区域。 Taken Heihe region in Heilongjiang Province as study area, the fixed sample plots data of continuous forest inventory and Landsat TM5 data in 2005 and 2010 were taken as data resources. First, based on the 2005 and 2010 images as a reasarch object, a total of 73 feature variables were extracted for texture, terrain, and meteorological factors, and the first six importance variables were selected according to the IncMSE(Increase Mean Squared Error%) index. Next, the estimation forest AGB was compared and analyzed between RF model and traditional multiple stepwise regression model. Finally, the high-accuracy models were used to estimate the forest AGB and space-time dynamic analysis of Heihe region in two periods. The results were showed that the introduction of the texture factor based on RF model can improve the accuracy to a certain extent. The in the two periods is 0.40 and 0.39, RMSE is 27.41(t/hm^2) and 32.01(t/hm^2), respectively, which is better than traditional stepwise multiple linear regression results. The growth trend has a significant increase in high-level areas with AGB greater than 80(t/hm^2), mainly concentrated in the eastern and some northern mountainous areas and medium-altitude areas.
作者 马骁 王华 何瑞 高厚兴 徐梦 Ma Xiao;Wang Hua;He Rui;Gao Houxing;Xu Meng(School of Forestry,Northeast Forestry University,Harbin 150040,Heilongjiang, China)
出处 《林业科技情报》 2020年第4期10-16,共7页 Forestry Science and Technology Information
关键词 随机森林 森林地上生物量 时空分析 变化矩阵 Random forest above ground biomass spatio-temporal analysis change matrix
  • 相关文献

参考文献3

二级参考文献39

  • 1戴小华,余世孝.遥感技术支持下的植被生产力与生物量研究进展[J].生态学杂志,2004,23(4):92-98. 被引量:36
  • 2朱文泉,陈云浩,徐丹,李京.陆地植被净初级生产力计算模型研究进展[J].生态学杂志,2005,24(3):296-300. 被引量:154
  • 3李小文,曹春香,常超一.地理学第一定律与时空邻近度的提出[J].自然杂志,2007,29(2):69-71. 被引量:115
  • 4赵俊芳,延晓冬,朱玉洁.陆地植被净初级生产力研究进展[J].中国沙漠,2007,27(5):780-786. 被引量:38
  • 5Ren Y (任义). The Establishment of Information System of Biomass and NPP in Greater Khingan Moun- tain based on the ' Map World'. Master Thesis. Harbin : Northeast Forestry University, 2014 (in Chinese).
  • 6YuG-R(于贵瑞).Global Change and Terrestrial Eco-system Carbon Cycle and Carbon Accumulation. Beijing: China Meteorological Press, 2003 (in Chinese).
  • 7Lu DS. The potential and challenge of remote sensing- based biomass estimation. International Journal of Re-mote Sensing, 2006, 27:1297-1328.
  • 8Kaasalainen S, Holopainen M, Karjalainen M, et al. Combining lidar and synthetic aperture radar data to esti- mate forest biomass: Status and prospects. Forests, 2015, 6:252-270.
  • 9Tobler W. A computer movie simulation urban growth in the Detroit region. Economic Geography, 1970, 46: 234-240.
  • 10Tsui OW, Coops NC, Wulder MA, et al. Integrating airborne LiDAR and space-borne radar via multivariate Kriging to estimate above-ground biomass. Remote Sen- sing of Environment, 2013, 139:340-352.

共引文献6

同被引文献49

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部