期刊文献+

TiO2/SiO2芯壳纳米阵列光阳极的制备及其光电性能 被引量:1

Preparation and Photovoltaic Performance of TiO 2/SiO 2 Core-shell Nanoarray Photoanodes
下载PDF
导出
摘要 在阳极氧化获得的一维TiO2纳米管阵列表面通过溶胶浸泡法引入具有宽带隙的SiO2薄钝化层,构建了TiO2/SiO2芯壳纳米阵列光阳极,详细研究了SiO2溶胶处理对光阳极微结构和组装染料敏化太阳能电池光电性能的影响。研究发现,在TiO2纳米管表面引入SiO2薄层,不仅增大了光阳极的比表面积,提高了对染料的吸附和对光的俘获,而且SiO2有助于在TiO2光阳极的表面形成能量势垒,有效抑制了TiO2中的电子与电解液或染料的复合。当SiO2溶胶处理时间为6h时,组装电池具有最佳的光电性能,电池能量转换效率达到8.87%,与未经SiO2溶胶处理的TiO2纳米阵列光阳极组装电池相比提高了72.57%。 A thin layer of wide-band-gap SiO 2 is introduced onto the anodic oxidized TiO 2 nanotube arrays by sol immersing as blocking layer to construct the TiO 2/SiO 2 core-shell nanoarrays photoanode for dye sensitized solar cell(DSSC).The effects of SiO 2 sol treatment on the microstructure of the photoanode and the corresponding photovoltaic properties of the assembled DSSCs were investigated in detail.It is found that the SiO 2 thin layer on the surface of TiO 2 nanotube obviously increases the aspect-ratio of the photoanode,and hence improves the dye and light adsorption.Furthermore,the SiO 2 thin layer helps to suppress the recombination of carriers.The cell based on TiO 2/SiO 2 core-shell nanoarrays photoanode with 6 h SiO 2-sol-treatment present an optimum photovoltaic performance,the power conversion efficiency is up to 8.87%.In comparison to the cell based on pure TiO 2 nanoarrays photoanode,an enhancement of 72.57%was achieved.
作者 陈鹏辉 陈雪 阳方玉 徐健 桃李 张军 CHEN Penghui;CHEN Xue;YANG Fangyu;XU Jian;TAO Li;ZHANG Jun(Faculty of Physics and Electronic Science,Hubei University,Key Laboratory of Ferroelectric Piezoelectric Materials and Devices,Wuhan 430062,China)
出处 《材料科学与工程学报》 CAS CSCD 北大核心 2020年第6期961-965,共5页 Journal of Materials Science and Engineering
基金 国家自然科学基金资助项目(11374090,51602095)。
关键词 光阳极 太阳能电池 芯壳结构 纳米阵列 光电性能 Photoanode Solar cell Core-shell structure Nanoarrays Photovoltaic performance
  • 相关文献

参考文献3

二级参考文献106

  • 1Gratzel M. Nature, 2001, 414:338-344.
  • 2朱俊(ZhuJ) 戴松元(DaiSY) 张耀红(ZhangYH).化学进展,2011,22:822-828.
  • 3Bisquert J. J. Phys. Chem. B, 2002, 106:325-333.
  • 4Hagfeldt A, Boschloo G, Sun L C, Kloo L, Pettersson H. Chem. Rev., 2010, 110:6595-6663.
  • 5Liu W Q, Hu L H, Dai S Y, Guo L, Jiang N Q, Kou D. Electrochim. Acta, 2010, 55:2338-2343.
  • 6Huang S Y, Schlichthorl G, Nozik A J, Gratzel M, Frank A J. J. Phys. Chem. B, 1997, 101:2576-2582.
  • 7Wang Q, Moser J E, Gratzel M. J. Phys. Chem. B, 2005, 109 : 14945-14953.
  • 8刘伟庆(LiuWQ) 寇东星(KouDX) 胡林华(HuLH) 黄阳(HuangY) 姜年权(JiangNQ) 戴松元(DaiSY).物理学报,2010,59:5141-5147.
  • 9Han L Y, Koide N, Chiba Y, Islam A, Komiya R, Fuke N, Fukui A, Yamanaka R. Appl. Phys. Lett. , 2005, 86: 3501- 3503.
  • 10Koide N, Islam A, Chiba Y, Han L Y. J. Photochem. Photobiol. A, 2006, 182:296-305.

共引文献26

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部