摘要
为提高锂电池荷电状态(state of charge,SOC)及健康状态(state of health,SOH)的估计精度,以二阶RC等效电路模型为研究对象,基于无迹卡尔曼滤波器(UKF)的思想,提出SOC-SOH联合估计的双自适应UKF滤波器算法,该算法通过对状态方差阵和噪声方差阵的递推估算,确保了状态和噪声方差阵的实时更新,并且能及时反映SOH变化趋势。仿真实验结果验证了该算法的正确性和有效性。
To improve the precision of lithium battery SOC and SOH estimation,taking the second order RC equivalent circuit model as the research object,a joint SOH-SOC estimation method is adopted based on Unscented Kalman Filter(UKF).The proposed algorithm can ensure the real-time update of the status and noise covariance matrix,and reflect the variation trend of SOH in time.The Matlab/Simulink simulation results show that the algorithm is correct and effective.
作者
陈涛
郭俊文
张芮
Chen Tao;Guo Junwen;Zhang Rui(Shanghai First Military Representative Office,Naval Armament Department of PLAN,Shanghai 200011,China;China Ship Development and Design Center,Wuhan 430064,China)
出处
《船电技术》
2020年第S01期95-100,共6页
Marine Electric & Electronic Engineering
关键词
锂电池
荷电状态
健康状态
无迹卡尔曼滤波器
自适应
lithium batteries
state of charge
state of health
unscented kalman filter
adaptive