期刊文献+

无需特征分解的快速谱聚类算法 被引量:2

Fast spectral clustering algorithm without eigen-decomposition
下载PDF
导出
摘要 为了解决样本数较大时,传统谱聚类算法执行特征分解消耗时间过大的问题,提出了一种无需特征分解的快速谱聚类算法,通过乘法更新迭代来降低时间开销。首先,利用Nystr?m方法进行随机采样,建立了采样矩阵和原始矩阵之间的关系;其次,基于乘法更新原理实现矩阵指示器矩阵的迭代更新;最后,在理论上对所设计算法进行了正确性和收敛性分析。在广泛使用的五个真实数据集和三个人工合成数据集上进行测试。实验结果表明,在真实数据集上,所提算法的标准互信息(NMI)平均值为0.45,与k-means聚类算法相比提高了12.50%;运行时间为61.73 s,与传统谱聚类算法相比减少了61.13%;而且表现性能优于层次聚类算法,验证了该算法的有效性。 The traditional spectral clustering algorithm needs too much time to perform eigen-decomposition when the number of samples is very large.In order to solve the problem,a fast spectral clustering algorithm without eigendecomposition was proposed to reduce the time overhead by multiplication update iteration.Firstly,the Nystr?m algorithm was used for random sampling in order to establish the relationship between the sampling matrix and the original matrix.Then,the indicator matrix was updated iteratively based on the principle of multiplication update iteration.Finally,the correctness and convergence analysis of the designed algorithm were given theoretically.The proposed algorithm was tested on five widely used real datasets and three synthetic datasets.Experimental results on real datasets show that:the average Normalized Mutual Information(NMI)of the proposed algorithm is 0.45,which is improved by 12.5%compared with that of the k-means clustering algorithm;the computing time of the proposed algorithm achieves 61.73 s,which is decreased by61.13%compared with that of the traditional spectral clustering algorithm;and the performance of the proposed algorithm is superior to that of the hierarchical clustering algorithm,which verify the effectiveness of the proposed algorithm.
作者 刘静姝 王莉 刘惊雷 LIU Jingshu;WANG Li;LIU Jinglei(College of Data Science,Taiyuan University of Technology,Jinzhong Shanxi 030600,China;School of Computer and Control Engineering,Yantai University,Yantai Shandong 264005,China)
出处 《计算机应用》 CSCD 北大核心 2020年第12期3413-3422,共10页 journal of Computer Applications
基金 国家自然科学基金资助项目(61872260) 山西省自然科学基金资助项目(201703D421013)。
关键词 谱聚类 Nystrom采样 收敛性分析 特征分解 乘法更新迭代 spectral clustering Nystrom sampling convergence analysis eigen-decomposition multiplication update iteration
  • 相关文献

参考文献6

二级参考文献26

  • 1Sun JG, Liu J, Zhao LY. Clustering algorithms research. Ruan Jian Xue Ban/Journal of Software, 2008,19(1):48-61 (in Chinese with English abstract), http://www.jos.org.cn/1000-9825/19/48.htm [doi: 10.3724/SP.J.1001.2008.00048].
  • 2Ding SF, Jia HJ, Zhang LW, Jin FX. Research of semi-supervised spectral clustering algorithm based on pairwise constraints. Neural Computing and Applications, 2014,24(1):211-219. [doi: 10.1007/s00521-012-1207-8].
  • 3Chert XL, Deng C. Large scale spectral clustering with landmark-based representation. In: Proc. of the 25th AAAI Conf. on Artificial Intelligence. 2011.313-318.
  • 4Song YQ, Chen WY, Bai HJ, Lin C J, Chang EY. Parallel spectral clustering. Machine Learning and Knowledge Discovery in Databases, 2008, 5212:374-389. [doi: 10.1007/978-3-540-87481-2_25].
  • 5Yan DH, Huang L, Jordan MI. Fast approximate spectral clustering. In: Proc. of the 15th ACM Conf. on Knowledge Discovery and Data Mining (SIGKDD). 2009. 907-916. [doi: 10.1145/1557019.1557118].
  • 6Lin F, Cohen WW. Power iteration clustering. In: Proc. of the Int'l Conf. on Machine Learning. 2010. 655-662.
  • 7Li M, Kwok JT, Lu BL. Making large-scale Nystr6m approximation possible. In: Proc. of the Int'l Conf. on Machine Learning. 2010. 631-638.
  • 8Williams CKI, Seeger M. Using the Nystr6m method to speed up kernel machines. In: Proc. of the Advances in Neural Information Processing Systems 13. 2001. 682-688.
  • 9Fowlkes C, Belongie S, Chung F, Malik J. Spectral grouping using the Nystr6m method. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004,26:214-225. [doi: 10.1109/TPAMI.2004.1262185].
  • 10Kumar S, Mohri M, Talwalkar A. Ensemhle Nystr6m method. In: Proc. of the Advances in Neural Information Processing Systems. 2009. 1060-1068.

共引文献249

同被引文献39

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部