期刊文献+

基于深度学习的无人机视频车辆行为分析 被引量:1

Deep Learning-based Vehicles Behavior Recognition for Unmanned Aerial Vehicle Data
下载PDF
导出
摘要 本文提出一种基于深度神经网络的车辆行为分析框架用于交通参数的智能化提取。该框架先基于利用单镜头多盒探测器(SSD)检测实现车辆检测与识别,然后在视频序列中对车辆进行线性跟踪,根据追踪结果对车辆轨迹进行建模,设计基于LSTM的深度学习模型对车辆行为进行分类。本文以深圳市龙井地铁站T型路口的无人机数据作为研究对象,进行实验。结果表明,提出的方法能够提高车辆识别与跟踪算法的精度和效率,并获得准确的车辆分类结果及轨迹识别。 This paper proposes a vehicle behavior analysis framework based on deep neural network for intelligent extraction of traffic parameters.The framework is based on the use of single-lens multi-box detector(SSD)detection to achieve vehicle detection and recognition,and then linearly track the vehicle in the video sequence,model the vehicle trajectory according to the tracking result,and design a deep learning model based on LSTM Vehicle behavior is classified.This paper takes the UAV data from the T-junction of Shenzhen Longjing Metro Station as the research object and conducts experiments.The results show that the proposed method can improve the accuracy and efficiency of vehicle identification and tracking algorithms,and obtain accurate vehicle classification results and trajectory recognition.
作者 史明骏 李庆 朱家松 SHI Mingjun;LI Qing;ZHU Jiasong(Institute of Mathematical,University of South China,Hengyang Hunan 421000,China;School of Civil Engineering,Shenzhen University,Shenzhen Guangdong 518060,China;Key Laboratory of Spatial Information Smarting Sensing and Services Shenzhen University,Shenzhen Guangdong 518060,China)
出处 《交通节能与环保》 2020年第6期23-27,共5页 Transport Energy Conservation & Environmental Protection
基金 国家自然科学基金(41871329)。
关键词 无人机视频 深度神经网络 车辆跟踪检测 车辆行为分析 unmanned aerial vehicle deep neural network vehicle tracking and detection vehicle behavior recognition
  • 相关文献

参考文献1

二级参考文献13

  • 1Atev S,Miller G,Papanikolopoulos N P.Clustering of vehicletrajectories [J].IEEE Transactions on Intelligent Transportation Systems,2010,11(3):647-657.
  • 2Morris B T,Trivedi M M.Understanding vehicular traffic behavior from video:a survey of unsupervised approaches[J].Journal of Electronic Imaging,2013,22(4):6931-6946.
  • 3Morris B T,Trivedi M M.Trajectory learning for activity understanding:Unsupervised,multilevel,and long-term adaptive approach[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(11):2287-2301.
  • 4Morris B,Trivedi M.Learning trajectory patterns by clustering:Experimental studies and comparative evaluation[C]∥IEEE Conference on Computer Vision and Pattern Recognition,2009(CVPR 2009).IEEE,2009:312-319.
  • 5Morris B,Trivedi M.An adaptive scene description for activity analysis in surveillance video[C]∥19th International Confe-rence on Pattern Recognition,2008(ICPR 2008).IEEE,2008:1-4.
  • 6Morris B T,Trivedi M M.Learning and classification of trajectories in dynamic scenes:A general framework for live video analysis[C]∥IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance,2008(AVSS’08).IEEE,2008:154-161.
  • 7Hu W,Xiao X,Fu Z,et al.A system for learning statistical motion patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(9):1450-1464.
  • 8Piciarelli C,Micheloni C,Foresti G L.Trajectory-based anomalous event detection[J].IEEE Transactions on Circuits and Systems for Video Technology,2008,18(11):1544-1554.
  • 9Breiman L.Random forests [J].Machine Learning,2001,45(1):5-32.
  • 10Zelnik-Manor L,Perona P.Self-tuning spectral clustering[C]∥Advances in Neural Information Processing Systems.2004:1601-1608.

共引文献7

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部