摘要
该文主要研究一维有界区间中具有对数敏感度的趋化模型{■tu=Duxx+(u(ln v)x)x,x∈(0,1),t>0.■tu=∈Uxx+uv-μu,x∈(0,1),t>0.根据Cole-Hopf变换将上述带奇性的排斥趋化模型变换为如下的非奇异方程组{pt=pxx+(pq)x,x∈(0,1),t>0,qt=∈qxx+∈(q^2)x+px,x∈(0,1)mt>0,并在混合边界条件下得到对应的初边值问题解的整体存在性和指数收敛性.
This paper investigates the following chemotactic model with logarithmic sensitivity in a one-dimensional bounded domain:{■tu=Duxx+(u(ln v)x)x,x∈(0,1),t>0.■tu=∈Uxx+uv-μu,x∈(0,1),t>0.By using a Cole-Hopf type transformation,we transform the above singular repulsive chemotaxis model into a non-singular system of the form {pt=pxx+(pq)x,x∈(0,1),t>0,qt=∈qxx+∈(q^2)x+px,x∈(0,1)mt>0,Then under some mixed boundary conditions,we prove the global existence and exponential convergence of solutions to the initial-boundary value problem of the above system with regular initial data.
作者
王娟
原子霞
Wang Juan;Yuan Zixia(School of Mathematical Sciences,University of Electronic Science and Technology of China,Chengdu 611731)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2020年第6期1646-1669,共24页
Acta Mathematica Scientia
基金
电子科技大学中央高校基本科研业务费(ZYGX2019J096)。
关键词
趋化
对数敏感度
混合边界条件
整体存在性
指数收敛性
Chemotaxis
Logarithmic sensitivity
Mixed boundary conditions
Global existence
Exponential convergence