期刊文献+

具有对数敏感度和混合边界的一维趋化模型解的整体存在性和收敛性

Global Existence and Convergence of Solutions to a Chemotactic Model with Logarithmic Sensitivity and Mixed Boundary Conditions
下载PDF
导出
摘要 该文主要研究一维有界区间中具有对数敏感度的趋化模型{■tu=Duxx+(u(ln v)x)x,x∈(0,1),t>0.■tu=∈Uxx+uv-μu,x∈(0,1),t>0.根据Cole-Hopf变换将上述带奇性的排斥趋化模型变换为如下的非奇异方程组{pt=pxx+(pq)x,x∈(0,1),t>0,qt=∈qxx+∈(q^2)x+px,x∈(0,1)mt>0,并在混合边界条件下得到对应的初边值问题解的整体存在性和指数收敛性. This paper investigates the following chemotactic model with logarithmic sensitivity in a one-dimensional bounded domain:{■tu=Duxx+(u(ln v)x)x,x∈(0,1),t>0.■tu=∈Uxx+uv-μu,x∈(0,1),t>0.By using a Cole-Hopf type transformation,we transform the above singular repulsive chemotaxis model into a non-singular system of the form {pt=pxx+(pq)x,x∈(0,1),t>0,qt=∈qxx+∈(q^2)x+px,x∈(0,1)mt>0,Then under some mixed boundary conditions,we prove the global existence and exponential convergence of solutions to the initial-boundary value problem of the above system with regular initial data.
作者 王娟 原子霞 Wang Juan;Yuan Zixia(School of Mathematical Sciences,University of Electronic Science and Technology of China,Chengdu 611731)
出处 《数学物理学报(A辑)》 CSCD 北大核心 2020年第6期1646-1669,共24页 Acta Mathematica Scientia
基金 电子科技大学中央高校基本科研业务费(ZYGX2019J096)。
关键词 趋化 对数敏感度 混合边界条件 整体存在性 指数收敛性 Chemotaxis Logarithmic sensitivity Mixed boundary conditions Global existence Exponential convergence
  • 相关文献

参考文献1

二级参考文献9

  • 1Othmer H G,Stevens A.Aggregation,blowup,and collapse:the ABC's of taxis in reinforced random walks.SIAM J Appl Math,1997,57:1044-1081.
  • 2Levine H A,Sleeman B D.A system of reaction diffusion equtions arising in the theory of reinforced random walks.SIAM J Appl Math,1997,57:683-730.
  • 3Sleeman B D,Levine H A.Partial differential equations of chemotaxis and angiogenesis.Math Methods Appl Sci,2001,24:405-426.
  • 4Yang Y,Chen H,Liu W A.On existence of global solutions and blow-up to a system of reaction-diffnsion equations modelling chemota.xis.SIAM J Math Anal,2001,33:763-785.
  • 5Hillen T,Potapov A.The one-dimensional chemotaxis model:global existence and asymptotic profile.Math Methods Appl Sci,2004,27:1783-1801.
  • 6Levine H A,Sleeman B D,Hamilton M N.Mathematical modeling of the onset of capillary formation initating angiogenesis.J Math Biol,2001,42:195-238.
  • 7Zhang M,Zhu C -J.Global existence of solutions to a hyperbolic-parabolic system.Proc Amer Math Soc,2007,135(4):1017-1027.
  • 8Kate S.On local and global existence theorems for a nonautonomons differential equtioan in a Banach space.Funkcial Ekvac,1976,19:279-286.
  • 9Nishida T.Nonlinear Hyperbolic Equtions and Related Topics in Fluid Dynamics.Publ Math,1978.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部