期刊文献+

融合时空上下文的复杂背景下多运动目标检测 被引量:3

Multiple moving targets detection under complex background by integrating spatio-temporal context
下载PDF
导出
摘要 针对目标进、出视场和被部分遮挡情况下检测率低的问题,提出一种联合时空上下文的多运动目标检测算法STC-MMTD。首先,利用时间上下文信息,基于前后向运动历史图提取候选目标区域;然后,利用空间上下文信息和目标表观信息,通过基于稀疏编码的CRF模型计算目标置信度图;最后,计算候选目标区域的目标置信度,检测出多运动目标。实验结果表明,所提算法具有良好的检测性能,在保证较高定位精度的同时,查全率、查准率和F测度均高于其他多目标检测算法的。 In order to solve the problem of low detection rate when targets enter/leave the field of view,or targets are partially occluded,a multi moving targets detection algorithm based on spatio-temporal context is proposed.Firstly,the time context information is used to extract the candidate target region,which is based on the forward and backward motion history map.Secondly,the spatial context information and the target apparent information are used to calculate the target confidence map,which is based on the sparsely encoded CRF model.Finally,the target confidence of the candidate target region is calculated to detect the multiple moving targets.The experimental results show that the proposed algorithm has good detection performance,and it has higher recall rate,precision and F measure than other multi-target detection algorithms under the condition of guaranteeing high positioning accuracy.
作者 张寅 蔡旭阳 许倩倩 闫钧华 苏恺 张琨 ZHANG Yin;CAI Xu-yang;XU Qian-qian;YAN Jun-hua;SU Kai;ZHANG Kun(Key Laboratory of Space Photoelectric Detection and Perception(Nanjing University of Aeronautics and Astronautics),Ministry of Industry and Information Technology,Nanjing 211106;College of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
出处 《计算机工程与科学》 CSCD 北大核心 2020年第12期2186-2192,共7页 Computer Engineering & Science
基金 国家自然科学基金(61705104) 江苏省自然科学基金(BK20170804) 国防科技创新特区项目支持。
关键词 多运动目标检测 复杂背景 时空上下文 前后向运动历史图 multiple moving targets detection complex background spatio-temporal context forward and backward motion history map
  • 相关文献

参考文献4

二级参考文献35

  • 1Crivelli T, Bouthemy P, Cernuschi-Frias B, Yao J.Simultaneous motion detection and background reconstruction with a conditional mixed-state markov random field.Int J Comput Vision 2011;94(3):295-316.
  • 2Barnich 0, Droogenbroeck MV.ViBe: a universal background subtraction algorithm for video sequences.IEEE Trans Image Process 2011;20(6): 1709-24.
  • 3Yin Z, Collins R.Moving object localization in thermal imagery by forward-backward MHI.In: IEEE conference on computer vision and pattern recognition, workshop, Jun 17-22; 2006.
  • 4Benedek C, Sziranyi T, Kato Z, Zerubia J.Detection of object motion regions in aerial image pairs with a multilayer Markovian model.IEEE Trans Image Process 2009;18(10): 2303-15.
  • 5Medioni G, Cohen I.Event detection and analysis from video streams.IEEE Trans Pattern Anal and Mach Intell 2001 ;23(8):873-89.
  • 6Kim J, Ye G, Kim D.Moving object detection under free-moving camera.In: 17th IEEE international conference on image processing.2010 Sept 26-29, Hongkong, China.Piscataway: IEEE; 2010.p. 4669-72.
  • 7Cao X, Lan J, Yan P, Li X.Vehicle detection and tracking in airborne videos by multi-motion layer analysis.Mach Vision Appl 2012;23(5):921-35.
  • 8Yu Q, Medioni G.Motion pattern interpretation and detection for tracking moving vehicles in airborne video.In: IEEE conference on computer vision and pattern recognition, 2009 Jun 20--25, Miami, FL, USA.Piscataway: IEEE; 2009.p.2671-78.
  • 9Cheng M, Zhang G, Mitra N J, Huang X.Hu S.Global contrast based salient region detection.In: IEEE conference on computer vision and pattern recognition, 2011 Jun 20--25, Providence, RI.Piscataway: IEEE; 2011.p.409-16.
  • 10Borji A, Itti L.Exploiting local and global patch rarities for saliency detection.In: IEEE conference on computer vision and pattern recognition; 2012.

共引文献30

同被引文献20

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部