期刊文献+

基于OpenMV辅助进食机械手人脸检测算法研究 被引量:5

Research on face detection algorithms of auxiliary feeding manipulator based on openMV
下载PDF
导出
摘要 针对手脚不便的老人或者上体截肢的特殊人群用餐问题,提出了基于机器视觉的辅助进食机械手设计方案。针对系统的设计需求,分析了基于Haar特征Adaboost人脸检测分类器的组织结构以及检测原理,结合基于视觉的目标追踪比例-积分-微分(PID)控制算法,利用其响应快鲁棒性强等特点,有效实现人脸移动的追踪要求。最后通过辅助进食调试,机械手能够完成对人脸的检测和辅助进食工作,达到了预期的控制效果。 Aiming at the the problem of feeding for the elderly or the upper limb amputees,a design scheme of feeding assistant manipulator based on machine vision is proposed.Aiming at the design requirement of the system,the structure and detection principle of Adaboost face detection classifier based on Haar feature are analyzed,and the visual-based object tracking proportional-integral-differential(PID)control algorithm is combined to make use of its features of fast response and strong robustness,effective realize requirement of face tracking.Finally,the manipulator can complete the detection of the human face and feeding-assistant work through feeding-assistant debugging,and achieve the desired control effect.
作者 刘祚时 许志良 张平 LIU Zuoshi;XU Zhiliang;ZHANG Ping(School of Mechanical and Electrical Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China)
出处 《传感器与微系统》 CSCD 北大核心 2021年第1期39-41,45,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(71361014) 江西省科技计划资助项目(2015BBE50038) 江西省研究生创新专项资金资助项目(YC2018-S325)。
关键词 OpenMV平台 HAAR特征 人脸检测 比例-积分-微分(PID)追踪算法 OpenMV platform Haar Features face detection PID tracking algorithm
  • 相关文献

参考文献7

二级参考文献41

  • 1ZHU Kai-hua,QI Fei-hu,JIANG Ren-jie,XU Li.Automatic character detection and segmentation in natural scene images[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2007,8(1):63-71. 被引量:12
  • 2Samaria F S.Face Recognition Using Hidden Markov Models[D].Cambridge:Univ.of Cambridge,1994.
  • 3Belhumeur P,Hespanha J,Kriegman D.Eigenfaces vs.Fisher faces:Recognition Using Class Specific Linear Proiection.IEEE Trans.Pattern Analysis andMachine Intelligence,1997,19(7):711-720.
  • 4Lu CY Research on some issues of face recognition and system implementation[D].Beijing:Tsinghua University,1998.
  • 5Cootes T F,Taylor C J,Cooper D H et al.Active shape modle-their traning and application[J].Computer visiion graghics and image understanding,1995,61(1):38-59.
  • 6Bartlett M S.Movellan J R.Face recognition by independenton neural networks[J].J.component analysis,2002,13(6):1450-1464.
  • 7VALIANT L G. A theory of the learnable[J]. Communications of the ACM, 1984, 27(11): 1134-1142. doi: 10.1145/800057.808710.
  • 8SCHAPIRE R E. The strength of weak leaxnability[J]. Machine Learning, 1990, 5(2): 197-227. doi: 10.1007/ BF00116037.
  • 9FREUND Y. Boosting a weak learning algorithm by majority [J]. Information and Computation, 1995, 121(2): 256-285. doi: 10.1006/iaco.1995.1136.
  • 10SCHAPIRE R E. A brief introduction to boosting[C]. International Joint Conference on Artificial Intelligence, Sweden, 1999: 1401-1406.

共引文献55

同被引文献45

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部