摘要
基于叶栅端壁压力分布特性,采用控制点关联函数,构建10个设计变量的NURBS参数曲面,控制二次流和降低端壁传热系数。应用最优拉丁超立方实验设计,建立设计样本,并进行CFD性能评估,以端壁面平均Nu数和总压损失系数作为双重目标函数,构建多个代理模型的组合代理模型,用多目标遗传算法优化获得Pareto前沿。结果表明:在一定优化计算成本上,基于组合代理模型进行多轮优化,能够获得更满意的最优解。获得的最优端壁构型中,端壁平均Nu数可降低4.4%,叶栅出口总压损失可减小2.3%。
In accordance with the surface pressure distribution,endwall is contoured to reduce secondary flow and wall heat transfer with a NURBS surface of 10 design variables connected by trigonometric functions.Design samples are built by the optimal Latin Hypercube method and CFD evaluated.Their total pressure loss and averaged Nusselt number on the wall are the double minimum ob.jectives.Ensemble surrogate models are constructed to search the Pareto frontier of optimization.Results show that the optimal solution is more satisfactory from a multi-round search.Among available solutions,it is achieved with a reduction of 4.4% of endwall averaged Nusselt number and2.3% of total pressure loss.
作者
刘洋
陈榴
沈鹏
戴韧
LIU Yang;CHEN Liu;SHEN Peng;DAI Ren(School of Energy and Power Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处
《工程热物理学报》
EI
CAS
CSCD
北大核心
2020年第12期2942-2949,共8页
Journal of Engineering Thermophysics
基金
国家自然科学基金资助项目(No.51276116)。
关键词
透平叶栅端壁
多代理模型
组合代理模型
流热复合
优化设计
turbine cascade endwall
multi-Surrogate model
ensemble of surrogates
aero-thermal coupled
optimized design