期刊文献+

基于稀疏网格法的随机方腔流数值模拟研究 被引量:1

Numerical Simulations of Stochastic Cavity Flow Based on Sparse Grid
原文传递
导出
摘要 流动问题中存在大量随机因素,其影响会在流场内传播。多项式混沌方法是研究不确定性传播的高效方法之一。然而,随着不确定性变量的增多,全正交的多项式混沌方法计算量也会迅速增加。稀疏网格方法与多项式混沌方法的结合,成为主要研究发展方向。本文给出了稀疏网格生成方法,并用Gauss-Hermite积分规则构造多项式混沌。基于OpenFOAM求解器进行二次开发,模拟了不同数量的不确定性量对随机方腔流动的影响,验证稀疏网格方法的精度及效率,并与全正交多项式混沌方法和蒙特卡洛计算结果进行了对比。结果表明,高维情况下稀疏网格法的效率和精度较全正交多项式混沌方法有所提高,为研究不确定性CFD方法提供新思路。 There are a lot of random factors in the flow problem,and the influence will propagate in the flow field.Polynomial chaos is one of the most efficient methods to study the propagation of uncertainties.However,as the number of non-deterministic variables increases,the computation cost of full orthogonal polynomial chaos increases rapidly.The combination of sparse grid method and non-intrusive polynomial chaos method has become the main research direction.In this paper,a sparse grid generation method is presented,and polynomial chaos are constructed by Gauss-Hermite integral rule.The second development has proceeded base on OpenFOAM,the influence of different amounts of uncertainties on stochastic cavity flow is simulated,the precision and efficiency of sparse grid method are verified,which are compared with full orthogonal polynomial chaos method and Monte Carlo.The results show that the efficiency and accuracy of sparse grid method are better than that of full orthogonal polynomial chaos method in high dimensions,which provide a new way to study the non-deterministic CFD method.
作者 于佳鑫 王晓东 陈江涛 吴晓军 康顺 YU Jia-Xin;WANG Xiao-Dong;CHEN Jiang-Tao;WU Xiao-Jun;KANG Shun(Key Laboratory of Power Station Energy Transfer Conversion and System,Ministry of Education,North China Electric Power University,Beijing 102206,China;China Aerodynamics Research and Development Center,Mianyang 621000,China)
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2020年第12期2982-2991,共10页 Journal of Engineering Thermophysics
基金 国家数值风洞工程项目课题(No.NNW2018-ZT7B14) 国家自然科学基金(No.51876063)。
关键词 多项式混沌 稀疏网格 不确定性 方腔流动 OPENFOAM polynomial chaos sparse grid uncertainty square cavity flow OpenFOAM
  • 相关文献

参考文献4

二级参考文献26

  • 1康顺.计算域对CFD模拟结果的影响[J].工程热物理学报,2005,26(z1):57-60. 被引量:21
  • 2WANG XiaoDong1,2 & KANG Shun1 1 Key Laboratory of Condition Monitoring and Control for Power Plant Equipment, Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China,2 Department of Mechanical Engineering, Vrije Universiteit Brussel, Brussels 1050, Belgium.Application of polynomial chaos on numerical simulation of stochastic cavity flow[J].Science China(Technological Sciences),2010,53(10):2853-2861. 被引量:9
  • 3康顺,刘强,祁明旭.一个高压比离心叶轮的CFD结果确认[J].工程热物理学报,2005,26(3):400-404. 被引量:37
  • 4EU Project (Sixth Framework), Non-Deterministic Simulation for CFD-Based Design Methodologies (NODESIMCFD)[EB/OL]. [2009-03-11]. http://www.nodesim.eu/.
  • 5Zang T A, Hemsch M J, Hilburger M W, et al. Needs and Opportunities for Uncertainty Based Multidisciplinary Design Methods for Aerospace Vehicles [R]. Hampton, Va.: NASA Langley Res. Cent., 2002:1-53.
  • 6Najm H N. Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics [J]. Annu. Rev. Fluid Mech., 2009, 41:35-52.
  • 7Wiener S. The Homogeneous Chaos [J]. Am. J. Math., 1938, 60:897-936.
  • 8Le Maitre O, Knio O, Najm H N, et al. A Stochastic Projection Method for Fluid Flow I. Basic Formulation [J]. J. Comput. Phys., 2001, 173:481-511.
  • 9Xiu D, Karniadakis G E. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations [J]. SIAM Journal of Sci. Comput., 2002, 24:619-644.
  • 10Xiu D, Karniadakis G E. Modeling Uncertainty in Flow Simulations Via Generalized Polynomial Chaos [J]. J. Comput. Phys., 2003, 187:137-167.

共引文献34

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部