摘要
本文针对高超声速飞行器可能面临的高温(1000~1500℃)、高气动力载荷(10~1000 kPa)的服役工况,开展了各向异性刚性陶瓷隔热瓦材料的高温热-力耦合作用响应分析研究。采用应力场-温度场直接耦合方法,建立了考虑材料各向异性与物性剧烈变化影响的刚性隔热瓦热-力耦合有限元数值计算模型;应用该模型分析了不同隔热瓦厚度、不同温度载荷和不同气动力载荷下共150个工况的热-力耦合响应,建立了隔热瓦背温响应和厚度形变的应用参考数据库。分析结果表明,材料最终的厚度形变大小受气动力载荷压缩效应和热应力膨胀效应共同影响。本文研究结果可以为刚性陶瓷隔热瓦材料后续优化设计和应用提供参考。
In this paper,studies on the response characteristics of thermal-mechanical coupling in rigid ceramic insulation tiles under service conditions in hypersonic vehicles with high temperature(1000~1500℃)and high aerodynamic load(10~1000 kPa)service conditions are conducted.A finite element numerical model for thermal-mechanical coupling of rigid ceramic insulation tiles considering the effects of anisotropy and drastic changes in physical properties is established using the direct coupling method of stress field and temperature field.The thermal-mechanical coupling response of a total of 150 operating conditions with different thicknesses of tiles under different temperatures and aerodynamic loads is analyzed.And a reference database of engineering application for thermal response and thickness deformation of this thermal insulation tiles is established.The analysis results show that the final thickness deformation of the material is affected by both the compression effect of aerodynamic loads and the expansion effect of thermal stress.The research results in this paper can provide a reference for the subsequent optimization design and engineering application of rigid ceramic insulation tile materials.
作者
陈宇
李冬
孙陈诚
何雅玲
CHEN Yu;LI Dong;SUN Chen-Chen;HE Ya-Ling(Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education,School of Energy Power Engineering,Xi'an Jiaotong University,Xi'an 710049,China;National Key Laboratory of Advanced Functional Composite Materials,Aerospace Research Institute of Materials&Processing Technology,Beijing 100076,China)
出处
《工程热物理学报》
EI
CAS
CSCD
北大核心
2020年第12期3020-3029,共10页
Journal of Engineering Thermophysics
基金
装备预研教育部联合基金资助项目(No.6141A020335)。
关键词
刚性陶瓷隔热瓦
热-力耦合
有限元
rigid ceramic insulation tiles
thermal-mechanical coupling
FEM