期刊文献+

广告双寡头博弈模型的数值分析 被引量:1

Numerical Analysis of Advertising Duopoly Game Model
下载PDF
导出
摘要 在有限理性的基础上,构建了一个双寡头广告博弈模型,并求解其均衡点.通过稳定性理论分析了均衡点的局部稳定性.另外,对系统进行数值仿真分析通过改变产量调整速度会产生分岔、混沌等动力学现象,得到随着调整速度的逐渐增大,系统经历稳定状态、分岔状态最后进入混沌态.系统处于周期状态证明企业发展良好,而混沌态说明市场处于无序状态,这种情形不是制造商所期望的,因此,制造商只有将调整速度控制在一定范围内,选择最优的广告投入来促进产品销量增加才能达到自身利润最大化的目的. On the basis of bounded rationality,a game model of duopoly advertising is constructed and its equilibrium points are solved.Local stability of equilibrium points are analyzed by stability theory.In addition,numerical simulation analysis of the system will produce bifurcation,chaos and other dynamic phenomena when the speed of output adjustment is changed.It is concluded that the system will respective­ly experience stable state,bifurcation state and finally enter into chaos state as the adjustment speed increa­ses gradually.The system is in the stage state,which proves that the enterprise develops well.Chaos sug­gests that the market is disordered,in which case it is not what the manufacturers had expected.Therefore,manufacturers should control the speed in a certain range,so that manufacturers can choose the optimal amount of advertising input to promote the increase of product sales,in order to achieve their own profit maximization.
作者 张莉莉 周伟 ZHANG Lili;ZHOU Wei(School of Mathematics and Physics,Lanzhou Jiaotong University,Gansu Lanzhou 730070,China)
出处 《河北师范大学学报(自然科学版)》 CAS 2021年第1期8-14,共7页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(61863022) 中国博士后科学基金(2017M623276)。
关键词 双寡头 广告 均衡点 flip分岔 数值模拟 duopoly advertisement equilibrium point flip bifurcation numerical simulation
  • 相关文献

参考文献3

二级参考文献17

  • 1张悦,张庆灵,赵立纯,刘佩勇.广义生物经济系统的混沌跟踪控制[J].东北大学学报(自然科学版),2007,28(2):157-160. 被引量:5
  • 2May R M. Simple mathematical models with very com-plex dynamics[J].NATURE,1976.459-467.
  • 3May R M. Stability and complexity in model ecosys-tems[M].Princeton,New Jersey:Princeton University Press,2001.
  • 4Hastings A,Powell T. Chaos in a three-species food chain[J].ECOLOGY,1991,(03):896-903.
  • 5Summers D,Cranford J G,Healey B P. Chaos in peri-odically forced discrete-time ecosystem models[J].Chaos Solitons and Fractals,2000,(14):2331-2342.
  • 6Misra J C,Mitra A. Instabilities in single-species and host-parasite systems:period-doubling bifurcations and chaos[J].Computers and Mathematics with Applica-tions,2006,(3/4):525-538.
  • 7Wang F Y,Zeng G Z. Chaos in a Lotka-Volterra preda-tor-prey system with periodically impulsive ratio-har-vesting the prey and time delays[J].Chaos Solitons &Fractals,2007,(04):1499-1512.
  • 8Upadhyay R K. Multiple attractors and crisis route to chaos in a model food-chain[J].Chaos Solitons &Fractals,2003,(05):737-747.
  • 9Rai V. Chaos in natural populations:edge or wedge[J].ECOLOGICAL COMPLEXITY,2004,(02):127-138.
  • 10Upadhyay R K,Rai V. Complex dynamics and syn-chronization in two non-identical chaotic ecological systems[J].Chaos solitons &Fractals,2009.2233-2241.

共引文献11

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部