期刊文献+

Study on Statistical Out lier Det ection and Labelling 被引量:2

原文传递
导出
摘要 Outliers accompany control engineers in their real life activity.Indus trial reality is much richer than eleme ntary linear,quadratic,Gaussian assumptions.Outliers appear due to various and varying,often unknown,reasons.They meet research interest in statistical and regression analysis and in data mining.There are a lot of interesting algorithms and approaches to outlier detection,labelling,filtering and finally interpretation.Unfortunately,their impact on control systems has not been found sufficient attention in research.Their influence is frequently unnoticed,ignored or not mentioned.This work focuses on the subject of outlier detection and labelling in the cont ext of control system performance analysis.Selec ted statistical data-driven approaches are analyzed,as t hey can be easily implemented with limited a priori knowledge.The study consists of a simulation study followed by the analysis of real control data.Differe nt generation mechanisms are Simula ted,like overlapping Gaussian processes,symmetric and asymmetric,artificially shifted points and fat-tailed distributions.Simulation observations are confronted with industrial control loops datasets.The work concludes with a practical procedure,which should help practitioners in dealing with outliers in control engineering temporal data.
出处 《International Journal of Automation and computing》 EI CSCD 2020年第6期788-811,共24页 国际自动化与计算杂志(英文版)
  • 相关文献

参考文献2

二级参考文献12

  • 1J.Alamelu Mangai,V.Santhosh Kumar,S.Appavu alias Balamurugan.A Novel Feature Selection Framework for Automatic Web Page Classification[J].International Journal of Automation and computing,2012,9(4):442-448. 被引量:3
  • 2I.F. Akyildiz,W. Su,Y. Sankarasubramaniam,E. Cayirci.Wireless sensor networks: a survey[J]. Computer Networks . 2002 (4)
  • 3Y. Zhang,N.A.S. Hamm,N. Meratnia,A. Stein,M. van de Voort,P.J.M. Havinga.Statistics-based outlier detection for wireless sensor networks[J]. International Journal of Geographical Information Science . 2012 (8)
  • 4Fei Tony Liu,Kai Ming Ting,Zhi-Hua Zhou.Isolation-Based Anomaly Detection[J]. ACM Transactions on Knowledge Discovery from Data (TKDD) . 2012 (1)
  • 5Miao Xie,Song Han,Biming Tian,Sazia Parvin.Anomaly detection in wireless sensor networks: A survey[J]. Journal of Network and Computer Applications . 2011 (4)
  • 6Jen-Yan Huang,I-En Liao,Yu-Fang Chung,Kuen-Tzung Chen.Shielding wireless sensor network using Markovian intrusion detection system with attack pattern mining[J]. Information Sciences . 2011
  • 7Varun Chandola,Arindam Banerjee,Vipin Kumar.Anomaly detection[J]. ACM Computing Surveys (CSUR) . 2009 (3)
  • 8Victoria J. Hodge,Jim Austin.A Survey of Outlier Detection Methodologies[J]. Artificial Intelligence Review . 2004 (2)
  • 9Markus M. Breunig,Hans-Peter Kriegel,Raymond T. Ng,J?rg Sander.LOF[J]. ACM SIGMOD Record . 2000 (2)
  • 10Li-Jie Zhao 1,2 Tian-You Chai 2 De-Cheng Yuan 1 1 College of Information Engineering,Shenyang University of Chemical Technology,Shenyang 110042,China 2 State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110189,China.Selective Ensemble Extreme Learning Machine Modeling of Effluent Quality in Wastewater Treatment Plants[J].International Journal of Automation and computing,2012,9(6):627-633. 被引量:9

共引文献2

同被引文献24

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部