摘要
精确的板形控制理论对提高板带轧制质量有重要意义,而辊缝的高效预测是板形控制理论的重要内容.针对复杂辊系的辊缝在线计算问题,给出一种高效的计算方法.该方法以在简单辊系中成熟应用的影响函数法为基础,结合有限元法中建立刚度矩阵思想,并通过矩阵迭代方式求解矩阵来预测辊缝.通过对辊间接触压力向量Ψ的前置处理,实现了高效的初值预设,新型预测模型的求解速度与精度进一步提高.将该预测方法与有限元法对比分析,发现该方法计算时间大大少于有限元法,但精度与有限元法相近,最大误差仅为1.6%,满足在线计算时的要求.
Accurate shape control theory is of great significance to improve the quality of strip rolling.At the same time,the efficient prediction of roll gap becomes an important part of the shape control theory.Aiming at the problem of online computation of roll gap in a complex roll system,this paper presents a new and efficient calculation method to predict the roll gap numerically.The method is based on the influence function method which is widely used in simple roll systems,and combined also with the idea of establishing stiffness matrix like that used in finite element method.The matrix can be solved by matrix iteration so as to predict the roll gap.Through the pre-processing of the contact pressure vectorΨbetween rolls,the efficient presupposition of an initial value may be realized.Therefore,the efficiency and accuracy of the new prediction method are further improved.By comparing the proposed prediction method with the finite element method,it is found that the calculation time of this method is much less than that of the finite element method,while the accuracy approaches greatly to that of the finite element method.The maximum error resulting from this method is only 1.6%,which meets requirements of the on-line calculation indeed.
作者
李俊琛
黄旭涛
马国才
王军伟
潘吉祥
阮强
LI Jun-chen;HUANG Xu-tao;MA Guo-cai;WANG Jun-wei;PAN Ji-xiang;RUAN Qiang(College of Materials Science and Engineering, Lanzhou Univ. of Tech., Lanzhou 730050, China;Jiuquan Iron and Steel (group) Co. LTD, Jiayuguan 735100, China;State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou Univ. of Tech., Lanzhou 730050, China)
出处
《兰州理工大学学报》
CAS
北大核心
2020年第6期22-27,共6页
Journal of Lanzhou University of Technology
基金
甘肃省科技重大专项(17ZD2GB012)。
关键词
20辊轧机
辊系变形
影响函数法
有限元法
初值预设
roll mill 20
roll deformation
influence function method
finite element method
initial value preset