期刊文献+

金融系统中的早期预警信号及其统计物理性质

The Early-Warning Signals in the Financial System and its Statistical Physical Properties
下载PDF
导出
摘要 金融系统与其他复杂系统一样具有临界阈值,系统状态在到达临界点之前会显示微小的变化.运用统计物理的方法研究期货价格的方差和自相关特性,引入布朗运动和Tsallis-q-Gauss分布,研究其分布函数,呈现“尖头胖尾”的特征;引入互关联函数,研究方差与自相关分别与价格时间序列的关联情况,并同时进行比较,发现其具有长程相关性.最终验证了方差和自相关作为金融系统中期货市场早期预警信号的可行性. Financial system,similar to other complex systems,has its critical threshold,and there will be a slight variation when the system reaches its critical threshold.This paper studies the variance and autocorrelation of forward price by using the method of statistical physics.The Brown Motion and Tsallis-q-Gauss Distribution are introduced to study the distribution function,which is featured by a"peak and fat tail".Also the cross correlation is introduced to study the respective corrections between the time series of price and autocorrelation or variance.After comparison,it can be found that there is a long range correlation.And this paper finally proves the feasibility of taking autocorrelation and variance as early-warning signals.
作者 王焰辉 朱康 WANG Yanhui;ZHU Kang(School of Business,Fuzhou Institute of Technology,Fuzhou,Fujian 350506,China)
出处 《经济数学》 2020年第4期47-52,共6页 Journal of Quantitative Economics
基金 国家自然科学基金资助项目(11305064)。
关键词 早期预警信号 方差 自相关 布朗运动 Tsallis-q-Gauss分布 early-warning signals variance autocorrelation Brownian motion Tsallis-q-Gauss distribution
  • 相关文献

参考文献1

  • 1Marten Scheffer,Jordi Bascompte,William A. Brock,Victor Brovkin,Stephen R. Carpenter,Vasilis Dakos,Hermann Held,Egbert H. van Nes,Max Rietkerk,George Sugihara,李迎春,闫伟,蒋长胜(译),左玉玲(校).临界转换的早期预警信号[J].国际地震动态,2009(9):1-14. 被引量:2

二级参考文献77

  • 1Berglund N and Gentz B. Noise-Induced Phenomena in Slow-Fast Dynamical Systems--A Sample-Paths Ap- proach. Springer, 2006.
  • 2Guttal V and Jayaprakash C. Changing skewness : an early warning signal of regime shifts in ecosystems. Ecol. Lett., 2008, 11:450-460.
  • 3Horsthemke W and Lefever R. Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology. Springer,-1984.
  • 4Carpenter S R, et al. Leading indicators of trophic cascades. Ecol. Lett. , 2008, 11:128-138.
  • 5Strogatz S H. Nonlinear Dynamics and Chaos-With Applications to Physics, Biology, Chemistry and Engineering 1 st edn. Addison-Wesley, 1994 : 248-254.
  • 6Chisholm R A and Filotas E. Critical slowing down as an indicator of transitions in two-species models. J. The- or. Biol., 2009, 257:142-149.
  • 7Vandermeer J and Yodzis P. Basin boundary collision as a model of discontinuous change in ecosystems. Ecol- ogy, 1999, 80:1817-1827.
  • 8Rinaldi S and Scheffer M. Geometric analysis of ecological models with slow and fast processes. Ecosystems, 2000, 3:507-521.
  • 9Vandermeer J, Stone L and Blasius B. Categories of chaos and fractal basin boundaries in forced predator-prey models. Chaos Solitons Fractals, 2001, 12:265-276.
  • 10Leung H K. Bifurcation of synchronization as a nonequilibrium phase transition. Physica A, 2000, 281:311- 317.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部