期刊文献+

氧气A(O,O)波段气辉体发射率和临边辐射强度模拟与分析 被引量:1

Simulation and Analysis on Volume Emission Rate and Limb Radiation Intensity of Airglow at Oxygen A(O,O) Band
下载PDF
导出
摘要 临近空间大气参数如温度、密度、风场等对预报模型精度及航天器运行安全等有较大的影响,而气辉的辐射模拟是大气参数反演的重要过程.本文基于光化学模型计算了氧气A(0,0)波段气辉的体发射率和临边辐射强度.基于氧气A(0,0)波段气辉的光化学反应机制、大气动力学和光化学反应理论,建立产生O2(b1∑g+)的光化学模型.计算气辉体发射率,基于临边探测几何路径进行气辉辐射强度模拟.体发射率计算结果与AURIC模型结果的辐射值及辐射高度均一致.基于计算和模拟结果,对氧气A波段气辉体发射率和辐射强度的影响因素进行了分析. Atmospheric parameters in near space(temperature,density,wind field,etc.) have a great influence on the accuracy of the model prediction and the safety of spacecraft operation.Airglow simulation is an indispensable aspect of the inversion of the atmospheric parameter.In this paper,the Volume Emission Rate(VER) and limb radiation intensity of oxygen A(0,0) band airglow are calculated based on the photochemical model.Firstly,the photochemical model O2(b1∑g+) was established based on the theory of atmospheric dynamics,photochemical reaction mechanism,and photochemistry.Then,the VER of O2 A-band was calculated,and the limb radiation intensity of airglow is simulated using a geometric path integral along the line of sight.The simulation radiation and its corresponding height are both consistent with the results of AURIC model.Finally,based on the results of the simulation,the influence factors of VER and radiation of oxygen A-band airglow are analyzed.
作者 杨晓君 王后茂 王咏梅 YANG Xiaojun;WANG Houmao;WANG Yongmei(National Space Science Center,Chinese Academy of Sciences,Beijing 100190;School of Astronomy and Space Science,University of Chinese Academy of Sciences,Beijing 100049;Beijing Key Laboratory of Environment Exploration,Beijing 100190;Key Laboratory of Environmental Space Situation Awareness Technology,Chinese Academy of Sciences,Beijing 100190)
出处 《空间科学学报》 CAS CSCD 北大核心 2020年第6期1039-1045,共7页 Chinese Journal of Space Science
基金 国家自然科学基金项目资助(41704178)。
关键词 氧气A波段 气辉 体发射率 光化学 辐射强度 Oxygen A-band Airglow Volume Emission Rate(VER) Photochemistry Radiation intensity
  • 相关文献

参考文献2

二级参考文献37

  • 11,Roble R G. Major greenhouse cooling (yes, cooling): The upper atmosphere response to increased CO2. Rev Geophys, 1995, supp: 539
  • 22,Walterscheid R L. Solar cycle effects on the upper atmosphere: Implication for satellite drag. J Spacecr Rocets, 1989, 26: 439
  • 33,Visentine J T, Leger J L, Kuminecz J F, et al. STS-8 atomic oxygen effects experiment. AIAA-85-0415. 1985
  • 44,Leger J L, Visentine J T. A consideration of atomic oxygen interactions with the space station. J Spacecraft, 1986, 23(5): 505
  • 5Barlier F, Berger C, Falin J, et al. 1978. A thermospheric model based on satellite drag data. Ann Geophys, 34:9-24.
  • 6Berger C, Biancale R, Ill M, et al. 1998. Improvement of the empirical thermospheric model DTM:DTM-94-comparative review on various temporal variations and prospects in space geodesy applications. J Geodesy, 72:161-178.
  • 7Bilitza D, Reinisch B W. 2008. International reference ionosphere 2007:Improvements and new parameters. Adv Space Res, 42:599-609.
  • 8Bilitza D, Altadill D, Zhang Y, et al. 2014. The international reference ionosphere 2012—A model of international collaboration. J Space Weather Space Clim, 4:1-12.
  • 9Bishop J, Feldman P D. 2003. Analysis of the Astro-1/Hopkins Ultraviolet Telescope EUV-FUV dayside nadir spectral radiance measurements. J Geophys Res, 108:1243, doi:10.1029/2001JA000330.
  • 10Bobik P, PutisM, Bertaina M. 2013. UV night background estimation in South Atlantic Anomaly. 33rd International Cosmic Ray Conference. ID0874:123-127.

共引文献10

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部