期刊文献+

运用信息融合式高阶UKF的微小卫星姿态确定算法 被引量:3

Attitude Determination Algorithm for Micro-satellite Based on High-order UKF Using Information Fusion
下载PDF
导出
摘要 为提高微小卫星微型低成本姿态敏感器的姿态确定精度,基于磁强计/太阳敏感器/陀螺仪的姿态敏感器配置以及无迹卡尔曼滤波方法(Unscented Kalman Filter,UKF),设计了一种基于高阶UKF算法并且融合磁强计与太阳敏感器观测信息的微小卫星姿态确定算法.为提高系统状态方程非线性函数的一步预测精度,采用基于五阶UT变换的高阶UKF算法,增加了Sigma采样点数量,提高了系统状态预测精度.单一观测向量滤波算法不能同时满足多个不同量纲观测数据,本文提出一种同时利用两个观测向量的信息融合式滤波算法,根据磁强计和太阳敏感器的观测信息,通过卡尔曼滤波原理中的增益计算,分别得出地磁矢量和太阳矢量对应的卡尔曼增益信息.采用高斯概率密度准则进行信息融合,进而完成预测值的修正,得到同时满足磁强计以及太阳敏感器观测需求的四元数估计值,降低了观测误差的影响.仿真分析验证了算法的优越性. To improve the attitude determination accuracy of miniature low-cost attitude sensors,a micro-satellite attitude determination algorithm that combines magnetometer and solar sensor observations was designed,based on high-order Unscented Kalman Filter(UKF)and the attitude sensor configuration of magnetometer/solar sensor/gyroscope.Firstly,in order to improve the one-step prediction accuracy of the nonlinear system state equation,the high-order UKF algorithm with fifth-order UT transformation was used to increase the number of Sigma sampling points and improve the system state prediction accuracy.Secondly,owing to the shortcoming of the single observation vector filtering algorithm that couldn't coordinate multiple observation data with different dimension simultaneously,an information fusion filtering algorithm using two observation vectors was proposed,which was based on the observations of the magnetometer and the solar sensor.The Kalman gain was obtained by the information corresponding to the geomagnetic vector and the solar vector through the gain calculation of the UKF algorithm.Consequently,the Gaussian probability density criterion was used to fuse the Kalman gain information,and the fused information was used to correct the value of the one-step prediction.Therefore,this algorithm reduced the observation errors of the attitude quaternions.Finally,the simulation results proved the availability of the proposed method.
作者 张贺 秦伟伟 周城 宋恒辛 华玉峰 王宇 ZHANG He;QIN Weiwei;ZHOU Cheng;SONG Hengxin;HUA Yufeng;WANG Yu(College of Nuclear Engineering,Rocket Force University of Engineering,Xi'an 710025)
出处 《空间科学学报》 CAS CSCD 北大核心 2020年第6期1091-1101,共11页 Chinese Journal of Space Science
基金 国家自然科学基金项目(61503392,61773387) 陕西省自然科学基金项目(2020JM357)共同资助。
关键词 微小卫星 姿态确定 信息融合 高阶无迹卡尔曼滤波 高斯概率密度准则 Micro-satellite Attitude determination Information fusion High-order unscented Kalman filter Gaussian probability density criterion
  • 相关文献

参考文献6

二级参考文献58

  • 1周江华,苗育红,王明海.姿态运动的Rodrigues参数描述[J].宇航学报,2004,25(5):514-519. 被引量:38
  • 2张红梅,邓正隆,高玉凯.UKF在基于修正罗德里格参数的飞行器姿态确定中的应用[J].宇航学报,2005,26(2):164-167. 被引量:11
  • 3刘朝山,马瑞萍,肖称贵,刘光斌.基于星图匹配的导弹初始定位定向方法研究[J].系统工程与电子技术,2005,27(8):1428-1431. 被引量:4
  • 4Julier Simon J, uhlmann Jeffrey K, Durrant-Whyte Hugh F. A new approach of filtering nonlinear systems[C]//Proceedings of the American Control Conference Seattle, Washington, 1995: 1628- 1632.
  • 5Julier Simon J. The scaled unscented transformation[C] // Proceedings of the American Control Conference Anchorage, AK, USA, 2002: 4555-4559.
  • 6Crassidis John L, Landis Markley F . Unscented filtering for spacecraft attitude estimation[C]//AIAA Guidance Navigation and Control Conference and Exhibit Austin, Texas, 2003 : 11 -14.
  • 7Julie Deutschmann, Itzhack Bar-Itzhack, Ken Galal. Quaternion normalization in spacecraft attitude determination[J].AIAA - 92-4266-CP, 1992.
  • 8Idan M. Estimation of rodrigues parameters from vector observations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(2): 578-586.
  • 9Shuster M D. Algorithms for determining optimal attitude solutions[R]. NASA-CR-183473, 1978.
  • 10刘海颖,王惠南,程月华.纯磁控微小卫星姿态控制研究[J].空间科学学报,2007,27(5):425-429. 被引量:5

共引文献69

同被引文献23

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部