期刊文献+

A Bayesian-neural-network prediction for fragment production in proton induced spallation reaction 被引量:7

原文传递
导出
摘要 Fragment production in spallation reactions yields key infrastructure data for various applications.Based on the empirical SPACS parameterizations,a Bayesian-neural-network(BNN)approach is established to predict the fragment cross sections in proton-induced spallation reactions.A systematic investigation has been performed for the measured proton-induced spallation reactions of systems ranging from intermediate to heavy nuclei systems and incident energies ranging from 168 MeV/u to 1500 MeV/u.By learning the residuals between the experimental measurements and SPACS predictions,it is found that the BNN-predicted results are in good agreement with the measured results.The established method is suggested to benefit the related research on nuclear astrophysics,nuclear radioactive beam sources,accelerator driven systems,proton therapy,etc.
作者 Chun-Wang Ma Dan Peng Hui-Ling Wei Yu-Ting Wang Jie Pu 马春旺;彭丹;魏慧玲;王玉廷;普洁(Institute of Particle and Nuclear Physics,Henan Normal University,Xinxiang 453007,China;School of Physics,Henan Normal University,Xinxiang 453007,China)
出处 《Chinese Physics C》 SCIE CAS CSCD 2020年第12期163-170,共8页 中国物理C(英文版)
基金 Supported by the National Natural Science Foundation of China(U1732135,11975091)。
  • 相关文献

同被引文献45

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部