期刊文献+

基于启发式BP算法的软件缺陷预测模型 被引量:2

Software Defect Prediction Model Based on Heuristic BP Algorithm
下载PDF
导出
摘要 针对软件缺陷预测时缺陷数据集中存在的类别分布不平衡问题,结合上采样算法SMOTE与Edited Nearest Neighbor (ENN)数据清洗策略,提出了一种基于启发式BP神经网络算法的软件缺陷预测模型。模型中采用上采样算法SMOTE增加少数类样本以改善项目中的数据不平衡状况,并针对采样后数据噪声问题进行ENN数据清洗,结合基于启发式学习的模拟退火算法改进四层BP神经网络后建立分类预测模型,在AEEEM数据库上使用交叉验证对提出的方案进行性能评估,结果表明所提出的算法能够有效提高模型在预测类不平衡数据时的分类准确度。 In order to solve the problem of unbalanced category distribution in the defect data set during software defect prediction,combined with the upsampling algorithm SMOTE and Edited Nearest Neighbor(ENN)data cleaning strategy,a software defect prediction model based on heuristic BP neural network algorithm is proposed.In the model,SMOTE algorithm is used to add a few samples to improve the data imbalance in the project,and the ENN algorithm is used for data cleaning for the data noise problem after sampling,combined with the simulated annealing algorithm that is based on heuristic learning to improve the four-layer BP neural network and to establish classification prediction model.The performance evaluation results of the proposed scheme using cross-validation on the AEEEM database show that the proposed algorithm can effectively improve the classification accuracy of the model when predicting unbalanced data.
作者 刘影 孙凤丽 郭栋 张泽奇 杨隽 LIU Ying;SUN Feng-li;GUO Dong;ZHANG Ze-qi;YANG Jun(China Aerospace Academy of Systems Science and Engineering,Beijing 100048,China)
出处 《测控技术》 2020年第12期111-115,共5页 Measurement & Control Technology
关键词 软件缺陷预测 类不平衡学习 BP神经网络 software defect prediction class-imbalanced learning BP neural network
  • 相关文献

参考文献7

二级参考文献161

共引文献159

同被引文献21

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部