期刊文献+

电子装备液冷连接器失效分析

Failure Analysis of Liquid-Cooled Connector on Electronic Equipment
下载PDF
导出
摘要 分析了电子装备液冷连接器漏液故障的影响因素,并结合漏液故障结构树定位出漏液故障是由液冷连接器壳体自身失效引起的。通过对故障液冷连接器进行密封耐压试验以及X射线检测,确定了液冷连接器失效是由于壳体根部出现了穿透性裂缝;进一步对裂缝处进行断面金相观察,发现该裂缝断面存在明显疲劳辉纹,是由疲劳应力引起的。分析表明:该电子装备工作过程一直处于高频振动环境,而与液冷连接器相连接的液冷管路通过多处绑扎进行固定,从而导致液冷连接器与液冷管路连接变为刚性连接,在高频振动环境下,液冷连接器疲劳应力超过材料疲劳强度而失效。 Based on the analysis of possible influencing factors of liquid-cooled connector leakage fault on electronic equipment with leakage fault structure tree,it is found that the leakage fault was caused by the failure of the liquid-cooled connector shell itself.The sealing test and X-ray inspection of the faulty liquid-cooled connector shows that the failure of the liquid-cooled connector was due to a crack caused by fatigue stress.Further analysis shows that the electronic equipment has been working in a high-frequency vibration environment,and the liquid-cooled pipeline connected to the liquid-cooled connector is fixed by multiple lashings,resulting in the liquid-cooled connector and The liquid-cooled pipeline connection becomes a rigid connection.In a high-frequency vibration environment,the liquid-cooled connector fails due to the fatigue stress exceeding the fatigue strength of the material.
作者 马政伟 余克壮 曹洪志 王庆兵 Ma Zheng-wei;Yu Ke-zhuang;Cao Hong-zhi;Wang Qing-bing(Southwest China Research Institute of Electronic Equipment,Sichuan Chengdu 610036)
出处 《电子质量》 2020年第12期42-45,共4页 Electronics Quality
基金 "技术基础科研项目"(项目编号:JSZL2018210A004)的资助。
关键词 密封耐压试验 X射线检测 疲劳裂纹 Sealing test X-ray inspection Fatigue crack
  • 相关文献

参考文献3

二级参考文献11

  • 1Redastone Arsenal. High Power Microwave Technology and Effects [ A]. A University of Maryland Short Course, 2005.
  • 2Capozzella Robert J, Colonel Lieutenant. High Power Microwaves on the Future Battlefield: Implications for U S Defense[R]. A Research Report Submitted to the Faculty in USAF, 2010.
  • 3Karlssonx M U, Olsson F, Berg D, et al. Bofors Hpm Blackout-A Versatile and Mobile L-Band High Power Microwave system[J]. IEEE Section on Plasma Science, 2009.
  • 4Guest Editorial. The Fourteenth Special Issue on High- Powermicrowave Generation[J]. IEEE Transactions on Plasma Science, 2012,40(6) .. 1493-- 1494.
  • 5Guest Editorial. The Fifteenth Special Issue on High- Power Microwave Generation[J]. IEEE Transactions on Plasma Science, 2014,1481.
  • 6The Thirteenth Special Issue on High-Powermicrowave Generation, IEEE Transactions on Plasma Science, 2010,38(6) :1138--1140.
  • 7Guest Editorial. The Twelfth Special Issue on High- Powermierowave Generation[-J]. IEEE Transactions on Plasma Seience, 2008,36(3) :566--568.
  • 8Eureka Aerospace. High-Power Compact Microwave Source for Vehicle Immobilization[A]. A Research Re- port Submitted to the U.S. Department of Justice, 2006.
  • 9Gtinter Dammertz, Stefano Alberti, Andreas Arnold, et al. High-Power Gyrotron Development at Forschung- szentrum Karlsruhe for Fusion Applications[J]. IEEE Transactions on Plasma Science, 2006, 34 (2):173- 186.
  • 10Sharon Weinberger. High-Power Microwave Weapons Start To Look Like Dead-End~J'~. Scientific American, 2012,(09).

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部