期刊文献+

量化误差对多天线无人机通信系统性能的影响与分析 被引量:1

Performance Analysis of Multi-Antenna UAV Communication System with Quantization Error
下载PDF
导出
摘要 无人机(Unmanned aerial vehicle, UAV)通信由于具有通信容量大、机动性高、信号配置灵活等优点,在应急通信等领域受到了国内外学者的青睐。基于此背景,该文研究了无人机相控阵天线中数字移相器的量化误差以及信道衰落特性对通信系统性能的影响。该文首先考虑了地面用户到UAV的上行链路,并假设信道衰落特性服从Nakgami-m分布,根据大数定理推导出了考虑量化误差时的等价信噪比,从而进一步推导出系统中断概率(Outage probability, OP)和平均误码率(Average sign error rate, ASER)的闭合表达式。最后通过Monte Carlo仿真验证了闭合表达式的正确性,并进一步分析了典型参数对系统性能的影响。 Unmanned Aerial Vehicle(UAV)has been favored by scholars at home and abroad in the field of emergency communication due to its advantages such as large communication capacity,high mobility,and flexible signal configuration in this paper,the quantization error of digital phase shifter in UAV phased array antenna and the influence of channel fading characteristics on the communication system performance are studied.The channel is modeled as the uplinks between ground user and UAV,and the channel fading characteristics obey Nakagami-m distribution.Based on the theorem of large Numbers,the equivalent SNR of system considering quantization error is derived,and then the closed expressions of system interrupt probability and average bit error rate are derived.Finally,the theoretical analysis of the closure expression is verified by computer Monte Carlo simulation,and the influence of typical parameters on system performance is analyzed.
作者 徐启钊 赵柏 刘智鹏 徐天 解路瑶 淡振雷 Xu Qi-zhao;Zhao Bai;Liu Zhi-peng;Xu Tian;Xie Lu-yao;Dan Zhen-lei(College of Telecommunications and Information Engineering,Nanjing University of Posts and Telecommunications,Jiangsu Nanjing 210003)
出处 《电子质量》 2020年第12期141-145,共5页 Electronics Quality
基金 江苏省研究生科研与实践创新计划项目(SJCX19_0237,SJCX19_0238,KYCX20_0814)资助课题。
关键词 无人机 相控阵 量化误差 Nakagami-m分布 性能分析 unmanned aerial vehicle communications phased array antenna quantization error Nakagami-m distribution performance analysis
  • 相关文献

参考文献3

二级参考文献36

  • 1Samad T,Bay J S,Godbole D. Network-centric systems for military operations in urban terrain:the role of UAVs[J].Proceedings of the IEEE,2007,(01):92-107.doi:10.1109/JPROC.2006.887327.
  • 2Iscold P,Pereira G A S,Torres L A B. Development of a hand-launched small UAV for ground reconnaissance[J].IEEE Transactions on Aerospace and Electronic Systems,2010,(01):335-348.
  • 3Sujit P B,Beard R. Multiple UAV exploration of an unknown region[J].Annals of Mathematics and Artificial Intelligence,2008,(2-4):335-366.
  • 4Berioli M,Molinaro A,Morosi S. Aerospace communications for emergency applications[J].Proceedings of the IEEE,2011,(11):1922-1938.
  • 5Brackett H. "Lost communication":the pilot to ATC communication solution[A].2011.1-21.
  • 6Cerasoli C. An analysis of unmanned airborne vehicle relay coverage in urban environments[A].2007.1-7.
  • 7Olsson P M,Kvarnstrom J,Doherty P. Generating UAV communication networks for monitoring and surveillance[A].2010.1070-1077.
  • 8Zhu H,Swindlehurst A L,Liu K. Optimization of MANET connectivity via smart deployment/movement of unmanned air vehicles[J].IEEE Transactions on Vehicular Technology,2009,(07):3533-3546.
  • 9de Freitas E P,Heimfarth T,Netto I F. UAV relay network to support WSN connectivity[A].2010.309-314.
  • 10Burdakov O,Doherty P,Holmberg K. Optimal placement of UV-based communications relay nodes[J].Journal of Global Optimization,2010,(04):511-531.

共引文献24

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部