期刊文献+

基于双边LCC谐振网络的功率可调无线充电系统设计 被引量:5

Design of double LCC resonant network for power adjustable wireless power transfer system
下载PDF
导出
摘要 针对小功率无线充电系统功率不可调的问题,提出了一种基于双边LCC谐振补偿网络的功率可调充电方案,建立了无线充电系统等效模型,分析控制常量对系统输出功率以及传输效率的影响。设计了无线充电实验系统,通过实验改变控制常量,对负载和输出功率以及传输效率分析。实验结果表明:通过调整控制常量,对3~15Ω负载,输出功率均可以实现3~10 W可调,且系统最大传输效率为88%,能够实现无线充电系统功率可调的目的。 Aiming at the problem that the power of low-power wireless power transfer system is not adjustable,a power-adjustable charging scheme based on the double LCC resonance compensation network is proposed.The equivalent model for the wireless power transfer system is established,and the influence of the control constant on the system output power and transmission efficiency is analyzed.A wireless power transfer experimental system is designed,change the control constants by experiment to analyze on load,output power and transmission efficiency.The experimental results show that by adjusting the control constant,the output power can be adjusted to 3~10 W for 3~15Ωload,and the maximum transmission efficiency of the system is 88%,which can achieve the purpose of adjustable power of the wireless charging system.
作者 孟祥翰 郭锋 童子洋 郭泽岩 汪润东 MENG Xianghan;GUO Feng;TONG Ziyang;GUO Zeyan;WANG Rundong(School of Information Engineering,Southwest University of Science and Technology,Mianyang 621010,China)
出处 《传感器与微系统》 CSCD 2020年第12期96-98,102,共4页 Transducer and Microsystem Technologies
关键词 无线充电 双边LCC补偿网络 控制常量 功率可调 wireless power transfer double LCC compensation network control constant power adjustable
  • 相关文献

参考文献4

二级参考文献41

  • 1Casanova J J, Low Z N, Lin J. A loosely coupled planar wireless power system for multiple receivers[ J]. IEEE Transactions on Industrial Electronics, 2009, 56 (8) : 3060-3068.
  • 2Li S, Mi C C. Wireless power transfer for electric vehicle applications[ J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(1): 4-17.
  • 3Moradewicz A J, Kazmierkowski M P. Contactless energy transfer system with FPGA-controlled resonant converter[J]. IEEE Transactions on Industrial Electronics, 2010, 57(9): 3181-3190.
  • 4Chwei-Sen W, Stielau O H, Covic G A. Design considerations for a contactless electric vehicle battery charger[J]. IEEE Transactions on Industrial Electronics, 2005, 52(5) : 1308-1314.
  • 5Jaegue S, Seungyong S, Yangsu K A. Design and implementation of shaped magnetic-resonance-based wireless power transfer system for roadway-powered moving electric vehicles I J]. IEEE Transactions on Industrial Electronics, 2014, 61(2) : I179-ii92.
  • 6Zhang W, Wong S C, Tse C K. Analysis and comparison of secondary series and parallel compensated inductive power transfer systems operating for optimal efficiency and load-independent voltage-transfer ratio [Jl. IEEE Transactions on Power Electronics, 2014, 29 (6) : 2979-2990.
  • 7Duan C, Jiang C, Taylor A, et al. Design of a zero- voltage-switching large-air-gap wireless charger with low electric stress for electric vehicles[J]. IEEE Transactions on Power Electronics, 2013, 6(9) : 1742-1750.
  • 8Pantic Z, Sanzhong B, Lukic S. ZCS LCC-compensated resonant inverter for inductive-power-transfer application [ J]. IEEE Transactions on Industrial Electronics, 2011, 58(8): 3500-3510. .
  • 9Wu H H, Gilchrist A, Sealy K D, et al. A high efficiency 5 kW inductive charger for EVs using dual side control[ J]. IEEE Transactions on Industrial Informatics, 2012, 8(3): 585-595.
  • 10Tang C S, Sun Y, Su Y G, et al. Determining multiple steady-state ZCS operating points of a switch- mode contactless power transfer systemIJ]. IEEE Transactions on Power Electronics, 2009, 24(2): 416-425.

共引文献69

同被引文献50

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部