期刊文献+

基于大数据的智能风险防控平台设计与实现 被引量:10

Design and Implementation of Intelligent Risk Control Platform Based on Big Data
下载PDF
导出
摘要 金融安全是国家安全的重要组成部分,防范化解金融风险是金融工作的根本性任务。为帮助商业银行加快打造适应数字经济时代发展需要的风险防控平台,本文基于大数据应用的关键技术,提出了一种“五层两域”智能风险防控平台总体框架;纵向包含风险数据层、特征计算层、风险模型层、决策引擎层、业务接入层,各层之间松耦合、无状态、可扩展;横向则划分为生产部署域、业务运营域,可最大程度兼顾系统运行的稳定性与业务应用的灵活度。该设计有助于商业银行实现风险数据的统一治理和统一管理,在保证风险防控平台高效稳定运行的同时,又能在风险防控运营、数据分析、模型设计、规则调整等方面为风险防控业务人员提供充足的支撑。以某金融机构部署的智能风险防控平台为例,阐述了该平台的应用情况及实际成效,并对智能风险防控平台的应用发展提出建议。 Since financial security is an important part of national security,controlling financial risks is the fundamental task for financial management.To help banks accelerate the establishment of risk control platforms in the era of digital economy,this study proposes an overall framework of an intelligent risk control platform with“five layers and two domains”based on the key technologies of big data.Specifically,the framework vertically consists of a risk data layer,a feature computing layer,a risk model layer,a decision engine layer,and a business access layer and all these layers are loosely coupled,stateless,and extensible.Horizontally,the framwork can be divided into a production deployment domain and a business operation domain,which considers both the stability of system operation and flexibility of business application.This design is helpful for commercial banks to realize the unified governance and management of risk data.While ensuring the efficient and stable operation of the risk control platform,it can also provide sufficient support for risk control experts in risk control operation,data analysis,model design,and rule adjustment.Finally,using the intelligent risk control platform deployed by a financial institution as an example,this study expounds the application situation and practical effect of the platform and provides some suggestions.
作者 章明 刘培 Zhang Ming;Liu Pei(China UnionPay Co.,Ltd.,Shanghai 200135,China)
出处 《中国工程科学》 CSCD 北大核心 2020年第6期111-120,共10页 Strategic Study of CAE
基金 中国工程院咨询项目“网络空间安全保障战略研究”(2017-XY-45)。
关键词 风险防控 大数据 机器学习 实时计算 金融行业 risk control big data machine learning real-time computation financial industry
  • 相关文献

参考文献12

二级参考文献184

  • 1李雄伟,于明,杨义先,周希元.Fuzzy-AHP法在网络攻击效果评估中的应用[J].北京邮电大学学报,2006,29(1):124-127. 被引量:27
  • 2王媛媛,丁毅,孙媛媛,赵志丹.数据可视化技术的实现方法研究[J].现代电子技术,2007,30(4):71-74. 被引量:34
  • 3李凌燕.OLAP系统中多维数据可视化的实现[J].现代电子技术,2007,30(10):142-145. 被引量:2
  • 4工业和信息化部.《物联网“十二五”发展规划》发布[EB/OL].http://WWW.miit.gov.cn/n11293472/n11293832/n12771663/14473808.html.
  • 5涂子沛.大数据[M].桂林:广西师范大学出版社.2012.
  • 6维基百科.云计算[EB/OL].2012-10-31http://zh.wikipedia.org/wiki/云计算.
  • 7维克托·迈尔-舍恩伯格,肯尼思·库克耶.大数据时代[M].杭州:浙江人民出版社,2013:5-25.
  • 8高勇.啤酒与尿布[M].北京:清华大学出版社,2008.
  • 9Labrinidis A, Jagadish H V. Challenges and Opportunities with Big Data. Proc of the VLDB Endowment, 2012, 5(12) : 2032-2033.
  • 10Bizer C, Boncz P, Brodie M L, et al. The Meaningful Use of Big Data : Four Perspectives-Four Challenges. ACM SIGMOD Record, 2012, 40(4) : 56-60.

共引文献1362

同被引文献68

引证文献10

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部