期刊文献+

基于BIM-DB仿真和LS-SVM的建筑能耗预测 被引量:11

Building Energy Consumption Prediction Based on BIM-DB Simulation and LS-SVM
下载PDF
导出
摘要 建筑外围护结构性能对建筑能耗有十分显著的影响,其中影响较大的参数包括:外墙综合传热系数、外墙太阳辐射吸收系数、屋面综合传热系数、屋面太阳辐射吸收系数、外窗综合传热系数和窗墙比。为了在设计阶段实现建筑能耗预测,本文将建立的BIM模型导入Designbuilder能耗分析软件,针对以上六个外围护结构设计参数进行正交试验并利用能耗仿真获取数据样本集;在此基础上利用最小二乘支持向量机(LS-SVM)对建筑能耗数据进行预测。为了验证预测的可靠性,将预测结果分别同BP人工神经网络、小波神经网络以及SVM预测结果进行对比分析,结果表明LS-SVM对建筑能耗进行预测具有明显优势。 Performance of building envelope structure has a very significant impact on building energy consumption,the influential parameters include:external wall comprehensive heat transfer coefficient,external wall solar radiation absorption coefficient,roof comprehensive heat transfer coefficient,roof solar radiation absorption coefficient,external window comprehensive heat transfer coefficient and window to wall ratio.In order to realize the prediction of building energy consumption in the design stage,the BIM model is imported into the Designbuilder energy consumption analysis software.Orthogonal tests are conducted for the above six exterior envelope design parameters,and the data sample set is obtained by energy consumption simulation.On this basis,the least squares support vector machine(LS-SVM)is used to predict the building energy consumption data.In order to verify the prediction reliability,the predicted results are compared with BP artificial neural network,wavelet neural network and SVM,the results show that LS-SVM has obvious advantages in building energy consumption prediction.
作者 吴贤国 邓婷婷 陈彬 陶妍艳 王雷 WU Xian-guo;DENG Ting-ting;CHEN Bin;TAO Yan-yan;WANG Lei(School of Civil and Hydraulic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;School of Urban Construction,Wuchang Shouyi University,Wuhan 430064,China)
出处 《土木工程与管理学报》 北大核心 2020年第6期1-7,共7页 Journal of Civil Engineering and Management
基金 国家重点研发计划(2016YFC0800208) 国家自然科学基金(51378235 71571078 51308240)。
关键词 建筑能耗 BIM 能耗仿真 建筑围护结构 LS-SVM building energy consumption BIM simulation of energy consumption building envelope LS-SVM
  • 相关文献

参考文献3

二级参考文献20

共引文献1033

同被引文献115

引证文献11

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部