期刊文献+

基于石墨烯量子点与二硫化钼的双被动调Q激光器研究 被引量:3

Research on Double Passively Q-Switched Laser Based on Graphene Quantum Dots and Molybdenum Disulfide
原文传递
导出
摘要 为获得脉冲宽度窄、波形对称性好、输出性能稳定的脉冲激光,设计了一种基于石墨烯量子点与二硫化钼的1064 nm双被动调Q激光器。该激光器采用结构简单的线形腔结构,以808 nm LD为抽运源、Nd∶YVO4为增益介质。分别采用水热法和锂离子-插层法获得了石墨烯量子点溶液与二硫化钼溶液。经旋涂、烘干等工艺制备出可饱和吸收体,作为被动调Q器件。相比于单被动调Q激光器,双被动调Q激光器输出的激光脉冲宽度更窄、脉冲波形对称性更好。当抽运功率为12.9 W时,实验测到的调Q激光脉冲宽度为180 ns,重复频率为1085 kHz,信噪比为44 dB,平均输出功率为595 mW。 In order to obtain pulse lasers with narrow pulse width,good waveform symmetry,and stable output performance,a 1064 nm double passively Q-switched laser based on graphene quantum dots and molybdenum disulfide was designed.The laser used a simple linear cavity structure,with 808 nm LD as the pump source and Nd∶YVO4 as the gain medium.Graphene quantum dots and molybdenum disulfide were obtained by hydrothermal method and lithium-ion intercalation method respectively.Saturable absorbers were prepared through spin coating and drying process,which were used as passively Q-switched devices.Compared with the single passively Q-switched laser,the output pulse width of the double passively Q-switched laser was narrower and the pulse waveform symmetry was better.When the pump power was 12.9 W,the pulse width of Q-switched laser was 180 ns,the repetition rate was 1085 kHz,the signal-to-noise ratio was 44 dB,and the average output power was 595 mW.
作者 刘海洋 常建华 冯潇潇 戴腾飞 石少杭 戴瑞 刘俊彤 Haiyang Liu;Jianhua Chang;Xiaoxiao Feng;Tengfei Dai;Shaohang Shi;Rui Dai;Juntong Liu(College of Electronic and Information Engineering,Nanjing University of Information Science&Technology,Nanjing,Jiangsu 210044,China)
出处 《中国激光》 EI CAS CSCD 北大核心 2020年第11期19-25,共7页 Chinese Journal of Lasers
基金 国家自然科学基金(61875089) 江苏省研究生科研与实践创新计划(SJCX19-0308) 江苏省高等学校大学生创新创业训练计划(201910300008Z)
关键词 激光器 双被动调Q 石墨烯量子点 二硫化钼 全固态激光器 lasers double passively Q-switched graphene quantum dot disulfide molybdenum all-solid-state laser
  • 相关文献

参考文献6

二级参考文献84

  • 1Z. Cai, W. Wen, Y. Wang, Z. Zhang, X. Ma, X. Ding, and J. Yao, Chin. Opt. Lett. 3~ 342 (2005).
  • 2J. Cui, Z. Fan, Y. Xue, J. Zhang, G. Niu, Z. Shi, B. Pei, Y. Bi, and Y. Qi, Chin. Opt. Lett. 5, $42 (2007).
  • 3J. He, J. Liu, J. Du, J. Yang, and B. Man, Opt. Eng. 44, 094201 (2005).
  • 4J. Wang, Q. Zheng, Q. Xue, and H. Tan, Chin. Opt. Lett. 1, 604 (2003).
  • 5P. K. Mukhopadhyay, M. B. Alsous, K. Ranganathan, S. K. Sharma, P. K. Gupta, J. George, and T. P. S. Nathan, Appl. Phys. B 70, 713 (2004).
  • 6P. K. Mukhopadhyay, M. B. Alsous, K. Ranganathan, S. K. Sharma, P. K. Gupta, A. Kuruvilla, and T. P. S. Nathan, Opt. Laser Technol. 37, 157 (2005).
  • 7S. J. Holmgren, A. Fragemann, V. Pasiskevicius, and F. Laurell, Opt. Express 14, 6675 (2006).
  • 8V. Magni and M. Zavelani-Rossi, Opt. Commun. 152, 45 (1998).
  • 9Y. F. Chen, S. W. Tsai, and S. C. Wang, Appl. Phys. B 72, 395 (2001).
  • 10L. R. Marshall, A. Kaz, A. D. Hays, and R. L. Burnham, Opt. Lett. 17, 1110 (1992).

共引文献17

同被引文献25

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部