期刊文献+

基于高光谱技术与机器学习的新疆红枣品种鉴别 被引量:23

Identification of Xinjiang Jujube Varieties Based on Hyperspectral Technique and Machine Learning
原文传递
导出
摘要 为实现对红枣品种的判别,利用高光谱技术并结合机器学习算法对金丝大枣、骏枣和滩枣这三个品种的新疆红枣进行研究。首先,分别利用多元散射校正(MSC)、标准正态变量变换(SNV)、一阶导(1-Der)和Savitzky-Golay(SG)平滑等数据预处理方法对原始光谱进行预处理,研究了预处理方法对建模的影响;然后,利用光谱-理化值共生距离法(SPXY)将样本集划分为校正集和预测集,基于线性判别分析(LDA)、K-最近邻分类(KNN)和支持向量机(SVM)算法对预处理后的全波段光谱建立红枣品种鉴别模型,结果显示,在多种预处理方法中,1-Der的处理效果最好;然后,结合主成分分析(PCA)、连续投影算法(SPA)和竞争性自适应重加权采样(CARS)等特征提取方法对全波段光谱进行特征波段的提取,再基于特征波段建立红枣品种鉴别模型,结果发现,在几种特征提取方法中,基于CARS所提特征波段建立的模型可以获得最高的鉴别准确率;最后,以SVM模型为例对模型运行时间进行了比较,结果发现,基于特征波段所建模型的运行时间远短于基于全波段所建模型的运行时间。 To identify different Xinjiang jujube varieties,a hyperspectral technique and machine learning algorithms were employed to obtain and analyze the spectral data of Jinsi-jujube,Jun-jujube,and Tan-jujube.First,the original spectra were preprocessed using various data preprocessing methods,including multiplicative scatter correction(MSC),standard normal variate transformation(SNV),first-derivative(1-Der),and Savitzky-Golay(SG)smoothing.The effects of the preprocessing methods on modeling were investigated.Then,the samples were divided into calibration and prediction sets using sample set partitioning methods based on joint X-Y distance(SPXY).The jujube variety identification models were established based on linear discriminant analysis(LDA),K-nearest neighbor(KNN),and support vector machine(SVM)algorithms using the preprocessed full-band spectra.The results demonstrate that 1-Der outperformed other preprocessing methods mentioned above.Next,the characteristic bands were extracted from the full-band spectra using principal component analysis(PCA),successive projections algorithm(SPA),and competitive adaptive reweighted sampling(CARS).Then,the jujube variety identification models were established based on the characteristic bands.The CARS-based models achieved the highest accuracy in the models established based on several characteristic band extraction methods.Finally,taking the SVM model as an example,the model runtime was compared.The time required by the SVM model based on the characteristic bands was much shorter than the time required by the model based on the full-band spectra.
作者 刘立新 何迪 李梦珠 刘星 屈军乐 Lixin Liu;Di He;Mengzhu Li;Xing Liu;Junle Qu(School of Physics and Optoelectronic Engineering,Xidian University,Xi'an,Shanxi 710071,China;State Key Laboratory of Transient Optics and Photonics,Xi'an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences,Xi'an,Shanxi 710119,China;Sino-German College of Intelligent Manufacturing,Shenzhen Technology University,Shenzhen,Guangdong 518118,China;College of Physics and Optoelectronic Engineering,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province,Shenzhen University,Shenzhen,Guangdong 518060,China)
出处 《中国激光》 EI CAS CSCD 北大核心 2020年第11期284-291,共8页 Chinese Journal of Lasers
基金 国家自然科学基金(61378091) 高等学校学科创新引智计划 深圳大学光电子器件与系统教育部/广东省重点实验室开放基金(GD201711) 瞬态光学与光子技术国家重点实验室开放基金(SKLST201804)
关键词 光谱学 高光谱技术 机器学习 品种鉴别 数据预处理 特征波段提取 spectroscopy hyperspectral technique machine learning variety identification data preprocessing characteristic band extraction
  • 相关文献

参考文献5

二级参考文献32

共引文献90

同被引文献238

引证文献23

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部