期刊文献+

海洋多要素长时间序列的motif规则树构建方法研究 被引量:2

Research on construction method of motif rule tree for multi-element marine long time series
下载PDF
导出
摘要 对海洋数据进行挖掘能够有效地预测海洋灾害事件。海洋监测数据具有时序长、间隔短、多要素间强关联的特点,对长时间序列进行直接分析挖掘速度慢、效率低,现有方法大多采用符号化时间序列方法,但可能导致部分信息丢失且破坏要素间的关联性。本文定义了时间序列motif,用于发现时间序列中重复出现的,先前未知的局部信息,解决了符号化导致的信息丢失的问题,实现了时间序列motif的精确快速提取。通过构建motif规则树,实现了海洋多要素时间序列间强关联规则的挖掘。最后,给出关联规则评价参数,同随机游走数据对比后,证明了本文方法的有效性。 Data mining of marine data can effectively predict marine disaster events.Ocean monitoring data has the characteristics of long time series,short intervals,and strong correlation among multiple factors.Direct analysis and mining of longterm sequences will result in slow speed and low efficiency.Most of the existing methods use symbolic time series methods,but may cause some information Lost and disrupted relationships between features.This paper defines a time series motif,which is used to find repetitive and previously unknown local information in the time series,solves the problem of information loss caused by symbolization,and realizes accurate and fast extraction of time series motif.The mining of strong association rules between marine multi-element time series is realized.Finally,the evaluation parameters of association rules are given,and the comparison with random walk data proves the effectiveness of this method.
作者 赵丹枫 黄雁玲 黄冬梅 林俊辰 宋巍 ZHAO Danfeng;HUANG Yanling;HUANG Dongmei;LIN Junchen;SONG Wei(Department of Information Technology,Shanghai Ocean University,Shanghai 201306,China;Shanghai University of Electric Power,Shanghai 200090,China)
出处 《海洋通报》 CAS CSCD 北大核心 2020年第5期558-566,共9页 Marine Science Bulletin
基金 国家重点研发计划(2016YFC1401902)。
关键词 预测 海洋多要素时间序列 强关联规则 motif规则树 prediction marine multi-element time series strong association rules motif rule tree
  • 相关文献

参考文献4

二级参考文献45

  • 1李士进,朱跃龙,张晓花,万定生.基于BORDA计数法的多元水文时间序列相似性分析[J].水利学报,2009,39(3):378-384. 被引量:19
  • 2Abe, H., Ohsaki, M., Yokoi, H., Yamaguchi, T., 2005. Implementing an integrated time-series data mining envi- ronment based on temporal pattern extraction methods: a case study of an interferon therapy risk mining for chronic hepatitis. LNCS, 4012:425-435. [doi:10. 1007/11780496 45].
  • 3Andre-JSnsson, H., Badal, D.Z., 1997. Using Signature Files for Querying Time-Series Data. Practice of Knowledge Discovery in Databases, 1263:211-220.
  • 4Beaudoin, P.,-Coros, S., van'de Panne, M., Poulin, P., 2008. Motion-Motif Graphs. Symp. on Computer Animation, p.117-126.
  • 5Chiu, B.Y., Keogh, E.J., Lonardi, S., 2003. Probabilistic Discovery of Time Series Motifs. ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.493- 498.
  • 6Ding, H., Trajcevski, G., Scheuermann, P., Wang, X.Y., Keogh, E.J., 2008. Querying and Mining of Time Series Data: Experimental Comparison of Representa- tions and Distance Measures. Proc. Int. Conf. on Very Large Data Bases, 1(2):1542-1552.
  • 7Ferreira, P.G., Azevedo, P.J., Silva, C.G., Brito, R.M.M. 2006. Mining approximate motifs in time series Discov. Sci., 4265:89-101. [doi:10.1007/11893318 12].
  • 8Guyet, T., Garbay, C., Dojat, M., 2007. Knowledge construction from time series data using a collaborative exploration system. J. Biomed. Inform., 40(6):672- 687. [doi: 10.1016/j.jbi.2007.09.006].
  • 9Hegland, M, Clarke, W., Kahn, M., 2001. Mining the Macho dataset. Comput. Phys. Commun., 142(1-3):22-28. [doi:10.1016/S0010-4655(01)00307-1].
  • 10Lin, J., Keogh, E., Lonardi, S., Patel, P., 2002. Finding Motifs in Time Series. 2nd Workshop on Temporal Data Mining at the 8th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.53-68.

共引文献24

同被引文献42

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部