期刊文献+

微流控芯片-质谱联用接口的研究进展

Recent Advances of Microfluidic Chip-Mass Spectrometry Interfaces
下载PDF
导出
摘要 微流控芯片由于具有尺寸小、集成程度高、结构功能多样化和样品用量少等优势被广泛应用于化学、生命科学和医学等多个领域。质谱具有灵敏度高、检测速度快和便于定性定量分析等优点。微流控芯片与质谱的联用充分结合了二者各自的优势,通过简便的操作实现对微量样品的快速分析检测。接口的研究是二者联用的前提和关键,经过20余年的发展,微流控芯片与质谱的接口技术逐渐成熟,实现了高效稳定的离子化效果,保证了分析的效率和准确性。本文总结了基于电喷雾和基质辅助激光解吸两种离子化方式中,微流控芯片与质谱接口的主要类型和相关应用并分析了目前存在的问题及未来发展方向。 Microfluidic chips are widely used in many fields such as chemistry,life sciences and medical science due to their small size,high integration,diversified functions and little sample usage.Mass spectrometry has the advantages of high sensitivity,fast detection speed,and convenient qualitative and quantitative analysis.The combination of microfluidic chip and mass spectrometry fully combines their respective advantages and achieves the rapid analysis of trace samples through simple operation..The research on the interface is the key of microfluidic chip-mass spectrometry.After more than 20 years’ development,the interface technology between the microfluidic chip-mass spectrometry has gradually matured,achieving an efficient and stable ionization effect,ensuring the efficiency and accuracy of the analysis.In this review,the main types and related applications of the interface based on ESI and MALDI between microfluidic chip-mass spectrometry,as well as the current problem and future development were discussed.
作者 张荣楷 谭聪睿 徐伟 Zhang Rongkai;Tan Congrui;Xu Wei(School of Life Science,Beijing Institute of Technology,Beijing 100081,China)
出处 《生命科学仪器》 2020年第5期11-19,共9页 Life Science Instruments
基金 国家自然科学基金项目(21827810,61635003)。
关键词 微流控芯片 质谱 接口 电喷雾电离源 基质辅助激光解吸电离源 Microfluidic chip Mass spectrometry Interface ESI MALDI
  • 相关文献

参考文献4

二级参考文献24

  • 1方向,覃莉莉,白岗.四极杆质量分析器的研究现状及进展[J].质谱学报,2005,26(4):234-242. 被引量:37
  • 2周红华,郭寅龙,相秉仁,盛龙生.基质辅助激光解吸离子化─—一种新的质谱离子化技术[J].国外医学(药学分册),1995,22(4):197-200. 被引量:7
  • 3S.C. Jacobson, J.M. Ramsey, J.P. Landers (Eds.), Handbook of Capillary Electropho- resis, CRC Press, Boca Raton, FL, 1997, p. 827.
  • 4C.S. Effenhauser, A. Manz, H. Becker (Eds.), Microsystem Technology in Chemistry and Life Science. Springer, Berlin, 1998, p. 51.
  • 5S.S. Park, S.l. Cho, M.S. Kim, Integration of on-column immobilized enzyme reactor in microchip electrophoresis, Electrophoresis 24 (2003) 200-206.
  • 6H. Nagata, M. Tabuchi, K. Hirano, High-speed separation of proteins by microchip electrophoresis using a polyethylene glycol-coated plastic chip with a sodium dodecyl sulfate-linear polyacrylamide solution, Etectrophoresis 26 (2005) 2687-2691.
  • 7S. Mouradian, Lab on a chip: application in proteomics, Curr. Opin. Chem. Biol. 6 (2002) 51-56.
  • 8P. Giron, L. Dayon, J.C. Sanchez, Cysteine tagging for MS-based proteomics, Mass Spectrom. Rev. 30 (2011 ) 366-395.
  • 9N. Liu, L.C. Zhao, C.Y. He, Advances in technologies and biological applications of O-18 labeling strategies in LC-MS based proteomics: an updated review, Curt. Anal. Chem. 8 (2012) 22-34.
  • 10R. Aebersold, M. Mann, Mass spectrometry-based proteomics, Nature 422 (2003) 198-207.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部