期刊文献+

基于深度学习的西瓜可见/近红外光谱可溶性固形物预测模型研究 被引量:9

Prediction model research of SSC in watermelon based on deep learning and visible/near infrared spectroscopy
下载PDF
导出
摘要 通过可见/近红外光谱技术结合K最近邻法回归、随机森林回归、深度卷积神经网络及带有残差块的深度卷积神经网络4种化学计量学方法对不同糖度的西瓜进行定量判别,并借鉴适用于图像处理的深度网络模块对可见/近红外光谱进行建模。结果表明,深度学习网络模块一维化在可见/近红外光谱数据处理中体现了巨大潜力,卷积神经网络CNN模型在预测集中Rp为0.8559,RMSEP为0.7781°Brix,加入Res-block后的改进卷积神经网络Res-CNN在预测集中Rp为0.8932,RMSEP为0.7104°Brix。 In this study,near infrared spectroscopy combined with chemometrics building models to was used to detect the soluble solid contents from watermelon,through four methods,K nearest neighbors regression,Random forest regression,convolution neural network,convolution neural network added residual-block.Some deep learning modules with image processing,coding modules in 1-d ways and apply in Visible/Near-infrared spectroscopy for modeling exploration was used.As a result,deep learning modules showed great potential in Visible/Near-infrared spectroscopy data processing,and CNN model got 0.8559 correlation coefficient and 0.7781°Brix RMSEP in prediction-set.The Res-CNN model achieved 0.8932 correlation coefficient and 0.7104°Brix RMSEP in prediction-set.The results of this study could provide a reference for the rapid and non-destructive model development of watermelon quality.
作者 吴爽 李国建 介邓飞 WU Shuang;LI Guo-jian;JIE Deng-fei(College of Mechanical and Electronic Engineering,Fujian Agriculture and Forestry University,Fuzhou,Fujian 350002,China)
出处 《食品与机械》 北大核心 2020年第12期132-135,共4页 Food and Machinery
基金 国家自然科学基金(编号:61705037) 福建省农业工程高原学科建设项目(编号:712018014)。
关键词 可见/近红外光谱 西瓜 深度学习 残差块 可溶性固形物 visible/near-infrared spectrum watermelon deeplearn residual-block soluble solids content
  • 相关文献

参考文献12

二级参考文献150

共引文献1906

同被引文献123

引证文献9

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部