期刊文献+

基于强化学习算法原则的出行选择行为建模与仿真 被引量:1

Modeling and Simulation of Travel Choice Behavior based on Reinforcement Learning Principles
下载PDF
导出
摘要 针对目前高峰时段交通拥堵的问题,基于强化学习算法原则,提出了一种对出行者出行选择行为建模及仿真的方法.首先对出行者的认知更新过程进行建模,然后利用Logit模型来描述出行者的决策过程,最后采用MATLAB软件仿真了在不同小汽车出行成本费用下,出行者出行时间和出行方式选择的变化规律.仿真结果表明:随着小汽车出行成本的增加,部分小汽车出行者逐渐选择公共交通出行,并且当出行成本增加到15元以上时,出行方式选择变化趋于平缓;同时,出行者倾向于提前出行且高峰时段出行需求有所减少,进而有利于减缓高峰拥堵状况. Aiming at the issue of traffic congestion during peak hours,a method for modeling and simulating the travel choice behavior of commuters is proposed.The process of perception updating is modeled based on principles of reinforcement learning,and Logit model is used to describe the decision-making process of the commuters.A simulation on the choices of departure time and mode under different car travel cost is conducted using MATLAB.The simulation results indicate that most car commuters gradually choose public transport,and mode choice changes quickly with the increase of car travel cost until the car travel cost is over 15 yuan.Meanwhile,commuters are inclined to depart earlier than usual,and travel demand during peak hours is decreased,which releases peak hour congestion.
作者 赵思萌 ZHAO Simeng(China Railway LiuYuan Group Corporation,Tianjin 300308,China)
出处 《大连交通大学学报》 CAS 2020年第6期6-11,共6页 Journal of Dalian Jiaotong University
关键词 强化学习算法原则 认知更新过程 决策过程 reinforcement learning principles perception updating process decision-making process
  • 相关文献

参考文献6

二级参考文献46

  • 1张迦南,赵鹏.综合运输通道旅客出行方式选择行为研究[J].中国铁道科学,2012,33(3):123-131. 被引量:24
  • 2李志纯,黄海军.先进的旅行者信息系统对出行者选择行为的影响研究[J].公路交通科技,2005,22(2):95-99. 被引量:30
  • 3KHATTAK A J, TARGA F, YIM Y B. Investigation of traveler information and revealed travel behavior in the San-Francisco bay area[ R]. Sacramento: California Partners for Advanced Transit and Highways, 2003.
  • 4LEVINSON D. The value of advanced traveler information systems for route choice[J]. Transportation Research Part C, 2003, 11 ( 1 ) : 75-87.
  • 5ZHONG Shiquan, ZHOU Lizhen, MA Shoufeng, et ah Effects of different factors on drivers' guidance compliance behaviors under road condition information shown on VMS[J]. Transportation Research Part A, 2012, 46(9) : 1490-1505.
  • 6JOH C H. Modeling the impact of pre-trip information on commuter departure time and route choice[J]. Transportation Research Part B, 2001, 35 ( 10 ) : 887- 902.
  • 7FARAG S, LYONS G. To use or not to use? an empirical study of pre-trip public transport information for business and leisure trips and comparison with car travel[J]. Transport Policy, 2012, 20(3) : 82-92.
  • 8LI Zhichun, LAM W H K, WONG S C, et al. Modeling park-and-ride services in a multimodal transport network with elastic demand[J]. Journal of the Transportation Research Record, 2007, 1994: 101- 109.
  • 9JENELIUS E, MATISSON L, LEVINSON D. Traveler delay costs and value of time with trip chains, flexible activity scheduling and information[ J]. Transportation Research Part B, 2011, 45(5) : 789-807.
  • 10JENELIUS E. The value of travel time variability with trip chains, flexible scheduling and correlated travel times[J]. Transportation Research Part B, 2012, 46 (6) : 762-780.

共引文献46

同被引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部