期刊文献+

HKUST-1衍生Cu类普鲁士蓝的超电容性能 被引量:1

Supercapacitive performance of HKUST-1-derived copper Prussian blue
下载PDF
导出
摘要 由于传统方法制备规整的中空纳米颗粒条件较难掌控,本文借用了HKUST-1六面体模板来合成目标纳米Cu类普鲁士蓝(CuHCF)作为超级电容正极材料。首先通过添加PVP辅助水热合成Cu-MOF前驱物,然后用K3[Fe(CN)6]对Cu-MOF处理得到CuHCF。用X射线衍射仪(XRD)和钨灯丝扫描电镜(SEM)探究了处理前后的形貌和结构差异,并用氮气吸脱附法表征了CuHCF孔径及比表面积差异,使用循环伏安法、恒流充放电法和交流阻抗法等手段研究了CuHCF的电化学性能,同时探究了合成中表面活性剂PVP对普鲁士蓝结构形貌和电化学性能的影响。结果表明:在0.5 mol/L Na2SO4中性溶液中,1 A·g^-1的电流密度下,PVP辅助合成有微孔结构的CuHCF表现出254 F·g^-1的比电容,容量有显著提升,并具有优异的倍率性能。 It is difficult for traditional methods to control the synthetic conditions of hollow nanoparticles.Here HKUST-1 hexahedral templates were used to fabricate nano-CuHCF for anode materials for supercapacitors.CuMOF was first synthesized by hydrothermal method and then treated by K3[Fe(CN)6]to obtain CuHCF.The crystal structure and morphology of the CuMOF and CuHCF were characterized by XRD and SEM.The pore size and specific surface area of the two samples were measured by BET N2 adsorption/desorption experiment.The electrochemical properties of the CuHCF were studied by cyclic voltammetry,galvanostatic charge-discharge and EIS method.The effect of PVP on CuHCF􀆳s morphology and electrochemical properties was also investigated.The results show that in 0.5 mol/L Na2SO4 neutral solution the microporous CuHCF exhibits a specific capacitance of 254 F·g^-1 at 1 A·g^-1,which is significantly increased,and manifested excellent rate performance.
作者 张利 宋朝霞 刘伟 张政 刘洪达 ZHANG Li;SONG Zhaoxia;LIU Wei;ZHANG Zheng;LIU Hongda(School of Chemical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,China;College of Life Science,Dalian Minzu University,Dalian 116600,Liaoning Province,China)
出处 《电子元件与材料》 CAS CSCD 北大核心 2020年第12期42-47,共6页 Electronic Components And Materials
基金 国家自然科学基金(51877029)。
关键词 超级电容器 电极材料 类普鲁士蓝 PVP 微孔结构 倍率性能 supercapacitor electrode material Prussian blue analogues polyvinyl pyrrolidone(PVP) microporous structure rate performance
  • 相关文献

参考文献1

二级参考文献27

  • 1TOUP1N M, BROUSSE T, BELANGER D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor [J]. Chemistry of Materials, 2004, 16(16): 3184-3190.
  • 2AN K H, KIM W S, PARK Y S, et al. Supercapacitors using single- walled carbon nanotube electrodes [J]. Advanced Materials, 2001, 13(7): 497-500.
  • 3KAEMPGEN M, CHAN C K, MA J, et al. Printable thin film supercapacitors using single-walled carbon nanotubes [J]. Nano Letters, 2009, 9(5): 1872-1876.
  • 4HAO L, LI X, ZHI L. Carbonaceous electrode materials for supercapacitors [J]. Advanced Materials, 2013, 25(28): 3899-3904.
  • 5MARKOULIDIS F, LE1 C, LEKAKOU C, et al. A method to increase the energy density of supercapacitor cells by the addition of multiwall carbon nanotubes into activated carbon electrodes [J]. Carbon, 2014, 68: 58-66.
  • 6ZHU Y, MURALI S, STOLLER M D, et al. Carbon-based supercapacitors produced by activation ofgraphene [J]. Science, 201 l, 332(6037): 1537-1541.
  • 7RUDGE A, DAVEY J, RAISTR1CK I, et al. Conducting polymers as active materials in electrochemical capacitors [J]. Journal of Power Sources, 1994, 47(1/2): 89-107.
  • 8EI-KADY M K IHNS M, LI M P, et al. Engineering three-dimensional hybrid supcrcapacitors and microsupercapacitors for high-performance integrated energy storage [J]. PNAS, 2015, 112: 4233-4238.
  • 9RUDGE A, RAISTRICK I, GOTTESFELD S, et al. A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors [J]. Electrochimica Acta, 1994, 39(2): 273-287.
  • 10BELANGER D, REN X M, DAVEY J, et al. Characterization and long-term performance of polyaniline-based electrochemical capacitors [J]. Journal of the Electrochemical Society, 2000, 147(8): 2923-2929.

共引文献53

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部