期刊文献+

基于大气光偏振层析的雾天图像重构方法 被引量:3

Method of Haze Image Reconstruction Based on PolarizationLayering and Analysis of Airlight
原文传递
导出
摘要 为了提高偏振去雾方法对大气光估计的准确度,提出一种基于大气光偏振层析的雾天图像重构方法。在偏振空间下,将大气光梯度先验信息作为约束条件,对原始雾天偏振图像进行分层,估计大气光偏振图像;然后从大气光偏振图像中解析大气光,实现对大气光的偏振层析;最后,结合所提雾天图像偏振重构模型,并在大气光图像中估计无穷远处大气光,实现对雾天图像的去雾重构。实验结果表明,所提方法提高了大气光估计的准确度,进而使重构图像更清晰、目标还原度更高,且适用于不同浓度下的雾天图像重构。 To improve the accuracy of airlight estimation in polarization dehazing methods,a method for haze image reconstruction based on polarization layering and analysis of airlight is proposed.In the polarization space,the gradient prior information of the airlight is used as a constraint condition,and the original polarized hazy image is layered to estimate the polarized image of the airlight.This allows the analysis of the airlight from the polarized images,and the polarization layering and analysis of the airlight can be realized.Finally,by combining the proposed polarization reconstruction model of haze images and the estimation of atmospheric light at infinity in airlight images,a clear haze-free image is reconstructed.The experimental results show that the proposed method improves the accuracy of airlight estimation,provides a clearer reconstructed image,and provides a higher target restoration degree.The proposed method is suitable for haze image reconstruction under different concentrations.
作者 邵子奇 金海红 钱立进 范之国 Ziqi Shao;Haihong Jin;Lijin Qian;Zhiguo Fan(School of Computer Science and Information Engineering,Hefei University of Technology,Hefei,Anhui 230601,China;School of Electronic and Information Engineering,Anhui Jianzhu University,Hefei,Anhui 230601,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第22期113-123,共11页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61571177) 安徽省高等学校自然科学研究项目(KJ2018JD12)。
关键词 图像处理 图像重构 偏振去雾 大气光梯度先验 偏振层析 image processing image reconstruction polarization dehazing airlight gradient prior polarization layering and analysis
  • 相关文献

参考文献9

二级参考文献72

  • 1王萍,张春,罗颖昕.一种雾天图像低对比度增强的快速算法[J].计算机应用,2006,26(1):152-153. 被引量:62
  • 2Srinivasa G N, Shree K N. Vision and Atmosphere[J]. Interacfional Journal of Computer Vision, 2002, 48(3): 233-254.
  • 3Yoav Y S, Srinivasa G N, Shree K N. Instant Dehazing of Images Using Polarization[EB/OL]. (2008-01-17). http://www.ee.technion. ac.il/-yoav/publications/hazecvpr.pdf.
  • 4Yoav Y S, Srinivasa G N, Shree K N. Polarization-based Vision Through Haze[J]. Applied Opitics, 2003, 42(3): 511-525.
  • 5SEOW M J, ASARI V K. Ratio rule and homomorp- hicfilter for enhancement of digital colour image[J].Neurocomputing, 2006,69 (7) : 954-958.
  • 6TAN R T. Visibility in bad weather from a single image [C]. Proceedings of IEEE CVPR, 2008:1-8.
  • 7SHWARTZ S, NAMER E, SCHECHNER Y Y. Blind haze separation [C]. NewYork.. CVPR, 2006: 1984-1991.
  • 8HE K, SUN J, TANG X O. Single image haze removal using dark channel prior [C]. Miami: CVPR, 2009: 1956-1963.
  • 9He K M,Sun J,Tang X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Anal- ysis and Machine Prior, 2009,33 (12) : 2341 - 2353.
  • 10Fattal R. Single image dehazing[C]//Proc ACM SIG- GRAPH, 2008 : 1-9.

共引文献105

同被引文献23

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部