期刊文献+

结合DenseNet与通道注意力机制的空对地目标检测算法 被引量:5

Air-to-Ground Target Detection Algorithm Based on DenseNet and Channel Attention Mechanism
原文传递
导出
摘要 空对地环境下成像视角单一,且需要依靠深层网络提供强特征表达能力。针对深层网络存在的计算量大、收敛速度慢等问题,在稠密连接网络(DenseNet)框架下,提出了一种用通道差异化表示的目标检测网络模型。首先,用DenseNet作为特征提取网络,并用较少的参数加深网络,以提高网络对目标的提取能力;其次,引入通道注意力机制,使网络更关注特征层中的有效特征通道,重新调整特征图;最后,用空对地目标检测数据进行了对比实验。结果表明,改进模型的平均精度均值比基于视觉几何组(VGG16)的单步多框检测算法高3.44个百分点。 In the air-to-ground environment,the imaging perspective is single,and it is necessary to rely on deep network to provide stronger feature representation capabilities.Aiming at the problems of large amount of calculation and slow convergence speed brought by deep network.Under the framework of densely connected network(DenseNet),a target detection network model expressed by channel differentiation is proposed.First,this article uses DenseNet as a feature extraction network,and uses fewer parameters to deepen the network to improve the ability to extract objects.Second,channel attention mechanism is introduced to make the network pay more attention to the effective feature channels in the feature layer and readjust the feature map.Finally,a comparative experiment is carried out by using the air-to-ground object detection data.The results show that the mean average precision of the improved model is 3.44 percentage points higher than that of single shot multibox detection algorithm based on visual geometry group(VGG16).
作者 王文庆 丰林 刘洋 杨东方 张萌 Wenqing Wang;Lin Feng;Yang Liu;Dongfang Yang;Meng Zhang(College of Automation,Xi'an University of Posts&Telecommunications,Xi'an,Shaanxi 710121,China;College of Missile Engineering,Rocket Force University of Engineering,Xi'an,Shaanxi 710025,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第22期124-129,共6页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61673017,61403398) 陕西省自然科学基金(2017JM6077) 陕西省科技厅重点项目(2018ZDXM-GY-039)。
关键词 图像处理 目标检测算法 特征提取 通道注意力机制 有效特征 密集连接 image processing target detection algorithm feature extraction channel attention mechanism effective feature dense connection
  • 相关文献

参考文献5

二级参考文献20

共引文献70

同被引文献38

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部