摘要
提出一种基于多视角低秩表征的短视频多标签分类模型。该模型将低秩表征和多标签学习结合到同一框架中,利用不同类型特征的一致性学习本征稳定的低秩表示。同时为了获得标签相关性的潜在表示,构建了标签相关性学习项来自适应地捕获标签的相关性矩阵。此外,模型利用监督信息进一步提高了其表征能力。大量的实验结果证实了所提方法的优越性。
We propose a microvideo multilabel learning model based on a multiview low-rank representation,which combines the low-rank representation and multilabel learning into a unified framework and uses the consistency in different features to learn an intrinsically robust low-rank representation.Meanwhile,to represent the potential label correlations,our proposed model constructs a label correlation learning term to adaptively capture the labels’correlation matrix.Furthermore,the supervised information is exploited to further improve the representation ability of our model.Extensive experiments on a large-scale public dataset show the effectiveness of the proposed scheme.
作者
吕卫
李德盛
谭浪
井佩光
苏育挺
Wei Lv;Desheng Li;Lang Tan;Peiguang Jing;Yuting Su(School of Electronics and Information Engineering,Tianjin University,Tianjin 300072,China;Beijing Smartchip Microelectronics Technology Co.,Ltd.,Beijing 102200,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2020年第22期139-146,共8页
Laser & Optoelectronics Progress
基金
国家自然科学基金(61802277)。
关键词
图像处理
低秩表征
多标签学习
多视角学习
短视频
image processing
low-rank representation
multi-label learning
multi view learning
micro-video