期刊文献+

基于多视角低秩表征的短视频多标签学习模型 被引量:1

Microvideo Multilabel Learning Model Based on Multiview Low-Rank Representation
原文传递
导出
摘要 提出一种基于多视角低秩表征的短视频多标签分类模型。该模型将低秩表征和多标签学习结合到同一框架中,利用不同类型特征的一致性学习本征稳定的低秩表示。同时为了获得标签相关性的潜在表示,构建了标签相关性学习项来自适应地捕获标签的相关性矩阵。此外,模型利用监督信息进一步提高了其表征能力。大量的实验结果证实了所提方法的优越性。 We propose a microvideo multilabel learning model based on a multiview low-rank representation,which combines the low-rank representation and multilabel learning into a unified framework and uses the consistency in different features to learn an intrinsically robust low-rank representation.Meanwhile,to represent the potential label correlations,our proposed model constructs a label correlation learning term to adaptively capture the labels’correlation matrix.Furthermore,the supervised information is exploited to further improve the representation ability of our model.Extensive experiments on a large-scale public dataset show the effectiveness of the proposed scheme.
作者 吕卫 李德盛 谭浪 井佩光 苏育挺 Wei Lv;Desheng Li;Lang Tan;Peiguang Jing;Yuting Su(School of Electronics and Information Engineering,Tianjin University,Tianjin 300072,China;Beijing Smartchip Microelectronics Technology Co.,Ltd.,Beijing 102200,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2020年第22期139-146,共8页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61802277)。
关键词 图像处理 低秩表征 多标签学习 多视角学习 短视频 image processing low-rank representation multi-label learning multi view learning micro-video
  • 相关文献

参考文献5

二级参考文献53

  • 1贾阳,王荣本,余天洪,金立生.基于熵最大化边缘提取的直线型车道标识线识别及跟踪方法[J].吉林大学学报(工学版),2005,35(4):420-425. 被引量:11
  • 2Candès E. J., Romberg J., Tao T.. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 3Donoho D. L.. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 4Candès E. J.. Compressive sampling[C]. Proceedings of the International Congress of Mathematicians, 2006. 1433-1452.
  • 5Donoho D. L., Tsaig Y., Starck J. L.. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit [R]. Stanford University Technical Report, 2006. 1-6.
  • 6Needell D., Vershynin R.. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit [J]. Foundations of Computational Mathematics, 2009, 9(3): 317-334.
  • 7Chartrand R.. Exact reconstruction of sparse signals via nonconvex minimization[J]. IEEE Signal Processing Letters, 2007, 14(10): 707-710.
  • 8Chartrand R., Wotao Y.. Iteratively reweighted algorithms for compressive sensing[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2008. 3869-3872.
  • 9Blumensath T., Davies M. E.. Iterative thresholding for sparse approximations[J]. J. Fourier Analysis and Applications, 2008, 14(5): 629-654.
  • 10Nagesh P., Li B. X.. Compressive imaging of color images[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2009. 1261-1264.

共引文献31

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部