摘要
关于行为检测的算法有很多,但针对教室场景下的学生行为检测算法却略显缺乏。为了使学生行为检测算法具有较好的准确率和实时性,在MTCNN的基础上改进了网络结构,并提出了一种新的激活函数和损失函数以检测学生图像和关键点。同时,提出了通过图像分类网络和关键点分类网络对学生行为进行联合分类的策略。实验结果表明,所提出的改进措施均有效提升了学生行为检测的准确率,最终模型的检测准确率为78.6%。在嵌入式开发板Jetson TX2上,所提算法的实时检测准确率和速度优于YOLOv3和SSD等算法。
There are many algorithms for behavior detection in different datasets,but there is a little lack of algorithms for student behavior detection in classroom.In order to achieve better accuracy and real-time of student behavior detection,this paper improves the network structure based on MTCNN,and proposes a new activation function and a loss function to detect student images and landmark localization.Meanwhile,this paper proposes the strategy of joint classification of student behaviors through the image classification network and the landmark localization classification network.The experimental results show that the proposed improvement actions effectively improve the accuracy of student behavior detection and the final detection accuracy of the model is 78.6%.On the embedded development board of Jetson TX2,the proposed algorithm has the real-time detection accuracy and speed superior to those of the other algorithms such as YOLOv3 and SSD.
作者
苏寒松
刘腾腾
刘高华
田曦初
Hansong Su;Tengteng Liu;Gaohua Liu;Xichu Tian(School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2020年第22期177-183,共7页
Laser & Optoelectronics Progress
基金
广州市科技计划(201802020008)。
关键词
图像处理
机器视觉
神经网络
行为检测
教室场景
image processing
machine vision
neural network
behavior detection
classroom scene