摘要
为了增强在位置服务(LBS)中对用户个人隐私的保护,提出基于本地缓存的位置感知匿名选择算法(LaSA).利用历史轨迹信息和缓存信息,以不依赖可信第三方(TTP)服务器的方式构建匿名区域.在连续位置服务查询中,利用马尔可夫预测模型对未来可能查询的位置进行预判.根据预测位置、缓存贡献度和数据新鲜度构建匿名区域,以覆盖用户所查真实区域.结果表明,与已有方案相比,所提出的LaSA隐私保护方案能提供更高的缓存命中率,减少用户服务请求次数,保证用户位置数据的安全.
A location-aware anonymous selection algorithm(LaSA)based on local cache was proposed in order to enhance the protection of users′privacy in location-based service(LBS).Anonymous zones were constructed without relying on the trusted third-party(TTP)server,using historical track information and cache information.The Markov prediction model was used to select the possible query location in the future continuous location service query.The anonymous region was constructed to cover the region inspected by user based on predicted location,cache contribution,and data freshness.Results show that the proposed LaSA solution can provide a higher cache hit rate reduce the number of user service requests,and ensure the security of user′s location data with comparison with the existing schemes.
作者
郑磊
张俊星
ZHENG Lei;ZHANG Jun-xing(College of Computer Science,Inner Mongolia University,Hohhot 010021,China)
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2020年第12期2437-2444,共8页
Journal of Zhejiang University:Engineering Science
基金
国家自然科学基金资助项目(61261019)
内蒙古自治区科技计划资助项目(201802027)
内蒙古自治区自然科学基金资助项目(2018MS06023)。
关键词
位置服务(LBS)
位置隐私
缓存策略
路径感知
马尔可夫模型
location-based service(LBS)
location privacy
caching-based solution
trajectory sensing
Markov model